Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 432
Filtrar
1.
Adv Sci (Weinh) ; : e2402048, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961641

RESUMEN

Ferro-rotational (FR) materials, renowned for their distinctive material functionalities, present challenges in the growth of homo-FR crystals (i.e., single FR domain). This study explores a cost-effective approach to growing homo-FR helimagnetic RbFe(SO4)2 (RFSO) crystals by lowering the crystal growth temperature below the TFR threshold using the high-pressure hydrothermal method. Through polarized neutron diffraction experiments, it is observed that nearly 86% of RFSO crystals consist of a homo-FR domain. Notably, RFSO displays remarkable stability in the FR phase, with an exceptionally high TFR of ≈573 K. Furthermore, RFSO exhibits a chiral helical magnetic structure with switchable ferroelectric polarization below 4 K. Importantly, external electric fields can induce a single magnetic domain state and manipulate its magnetic chirality. The findings suggest that the search for new FR magnets with outstanding material properties should consider magnetic sulfates as promising candidates.

2.
Phytother Res ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973263

RESUMEN

Ferroptosis is a form of iron-dependent regulatory cell death that is related to the pathogenesis and progression of various cardiovascular diseases, such as arrhythmia, diabetic cardiomyopathy, myocardial infarction, myocardial ischemia/reperfusion injury, and heart failure. This makes it a promising therapeutic target for cardiovascular diseases. It is interesting that a significant number of cardiovascular disease treatment drugs derived from phytochemicals have been shown to target ferroptosis, thus producing cardioprotective effects. This study offers a concise overview of the initiation and control mechanisms of ferroptosis. It discusses the core regulatory factors of ferroptosis as potential new therapeutic targets for various cardiovascular diseases, elucidating how ferroptosis influences the progression of cardiovascular diseases. In addition, this review systematically summarizes the regulatory effects of phytochemicals on ferroptosis, emphasizing their potential mechanisms and clinical applications in treating cardiovascular diseases. This study provides a reference for further elucidating the molecular mechanisms of phytochemicals in treating cardiovascular diseases. This may accelerate their application in the treatment of cardiovascular diseases and is worth further research in this field.

3.
Inflammation ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874810

RESUMEN

Previous studies have verified that celastrol (Cel) protects against rheumatoid arthritis (RA) by inhibiting the NLRP3 inflammasome signaling pathway, but the molecular mechanism by which Cel regulates NLRP3 has not been clarified. This study explored the specific mechanisms of Cel in vitro and in vivo. A type II collagen-induced arthritis (CIA) mouse model was used to study the antiarthritic activity of Cel; analysis of paw swelling, determination of the arthritis score, and pathological examinations were performed. The antiproliferative and antimigratory effects of Cel on TNF-α induced fibroblast-like synoviocytes (FLSs) were tested. Proinflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression of NF-κB/NLRP3 pathway components was determined by western blotting and immunofluorescence staining in vitro and in vivo. The putative binding sites between Cel and Hsp90 were predicted through molecular docking, and the binding interactions were determined using the Octet RED96 system and coimmunoprecipitation. Cel decreased arthritis severity and reduced TNF-α-induced FLSs migration and proliferation. Additionally, Cel inhibited NF-κB/NLRP3 signaling pathway activation, reactive oxygen species (ROS) production, and proinflammatory cytokine secretion. Furthermore, Cel interacted directly with Hsp90 and blocked the interaction between Hsp90 and NLRP3 in FLSs. Our findings revealed that Cel regulates NLRP3 inflammasome signaling pathways both in vivo and in vitro. These effects are induced through FLSs inhibition of the proliferation and migration by blocking the interaction between Hsp90 and NLRP3.

4.
Angew Chem Int Ed Engl ; : e202406512, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899603

RESUMEN

Band structure of a semiconducting film critically determines the charge separation and transport efficiency. In antimony selenosulfide (Sb2(S,Se)3) solar cells, the hydrothermal method has achieved control of bandgap width of Sb2(S,Se)3 thin film through tuning the atomic ratio of S/Se, resulting in an efficiency breakthrough towards 10%. However, the obtained band structure exhibits an unfavorable gradient distribution in terms of carrier transport, which seriously impedes the device efficiency improvement. To solve this problem, here we develop a strategy by intentionally regulating hydrothermal temperature to control the chemical reaction kinetics between S and Se sources with Sb source. This approach enables the control over vertical distribution of S/Se atomic ratio in Sb2(S,Se)3 films, forming a favorable band structure which is conducive to carrier transport. Meanwhile, the adjusted element distribution not only ensures the uniformity of grain structure, but also increases the Se content of the films and suppress sulfur vacancy defects. Ultimately, the device delivers a high efficiency of 10.55%, which is among the highest reported efficiency of Sb2(S,Se)3 solar cells. This study provides an effective strategy towards manipulating the element distribution in mixed-anion compound films prepared by solution-based method to optimize their optical and electrical properties.

5.
ISA Trans ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38851926

RESUMEN

When legged robots perform complex tasks in unstructured environments, falls are inevitable due to unknown external disturbances. However, current research mainly focuses on the locomotion control of legged robots without falling. This paper proposes a comprehensive decision-making and control framework to address the falling over of quadruped robots. First, a capturability-based fall prediction algorithm is derived for planar single-contact and 3D multi-contact locomotion with a predefined gait sequence. For safe fall control, a novel contact-implicit trajectory optimization method is proposed to generate both state and input trajectories and contact mode sequences. Specifically, incorporating uncertainty into the system and terrain models enables mitigating the non-smoothness of contact dynamics while improving the robustness of the resulting trajectories. Furthermore, a model-free deep reinforcement learning-based approach is presented to achieve fall recovery after the robot completes a fall. Experimental results demonstrate that the proposed fall prediction algorithm accurately predicts robot falls with up to 95% accuracy approximately 395ms in advance. Compared to classical locomotion controllers, which often struggle to maintain balance under significant pushes or terrain perturbations, the presented framework can autonomously switch to the fall controller approximately 0.06s after the perturbation, effectively preventing falls or achieving recovery with a threefold reduction in touchdown impact velocity. These findings highlight the effectiveness of the proposed framework in enhancing the stability and safety of legged robots in unstructured environments.

6.
J Fluoresc ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869709

RESUMEN

Zinc(II) ions (Zn2g) play crucial roles in the growth, propagation, and metabolism of animals, plants, and humans. Abnormal concentrations of Zn2+ in the environment and living organisms pose potential risks to environmental protection and human health. Therefore, it is imperative to develop rapid, reliable and in-situ detection methods for Zn2+ in both environmental and biological contexts. Furthermore, effective analytical methods are required for diagnosing diseases and understanding physiological metabolic mechanisms associated with Zn2+ concentration levels. Organic small-molecule fluorescent probes offer advantages such as fast, reliable, convenient, non-destructive detection capabilities and have significant application potential in Zn2+ detection and bioimaging; thus garnering extensive attention. Over the past two years alone, various organic small-molecule probes for Zn2+ based on different detection mechanisms and fluorophores have been rapidly developed. However, these probes still exhibit several limitations that need further resolution. In light of this context, we provide a comprehensive summary of the detection mechanisms, performance characteristics, and application scope of Zn2+ fluorescence probes since year 2022 while highlighting their advantages. We also propose solutions to address existing issues with these probes and outline future directions for their advancement. This review aims to serve as a valuable reference source offering insights into the development of advanced organic small-molecule-based fluorescence probes specifically designed for detecting Zn2+.

7.
Fish Shellfish Immunol ; 150: 109661, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38821227

RESUMEN

IgNAR exhibits significant promise in the fields of cancer and anti-virus biotherapies. Notably, the variable regions of IgNAR (VNAR) possess comparable antigen binding affinity with much smaller molecular weight (∼12 kDa) compared to IgNAR. Antigen specific VNAR screening is a changeling work, which limits its application in medicine and therapy fields. Though phage display is a powerful tool for VNAR screening, it has a lot of drawbacks, such as small library coverage, low expression levels, unstable target protein, complicating and time-consuming procedures. Here we report VANR screening with next generation sequencing (NGS) could effectively overcome the limitations of phage display, and we successfully identified approximately 3000 BAFF-specific VNARs in Chiloscyllium plagiosum vaccinated with the BAFF antigen. The results of modelling and molecular dynamics simulation and ELISA assay demonstrated that one out of the top five abundant specific VNARs exhibited higher binding affinity to the BAFF antigen than those obtained through phage display screening. Our data indicates NGS would be an alternative way for VNAR screening with plenty of advantages.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Tiburones , Tiburones/inmunología , Tiburones/genética , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Antígenos/inmunología , Antígenos/genética , Enfermedades de los Peces/inmunología
8.
Lasers Surg Med ; 56(5): 474-484, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38738401

RESUMEN

OBJECTIVES: The aim of this study is to investigate the safety and efficacy of excimer laser coronary angioplasty (ELCA) combined with drug-coated balloons (DCBs) in the treatment of in-stent restenosis (ISR), and to explore whether the contrast injection technique would improve the neointimal tissue ablation of ELCA. METHODS: We studied patients diagnosed with ISR between January 2019 and October 2022 at two medical centers. These patients underwent DCB angioplasty guided by optical coherence tomography (OCT). Based on whether ELCA was performed before DCB treatment, patients were categorized into two groups: the ELCA + DCB group and the DCB group. All patients underwent clinical follow-up 1 year after the procedure. The primary endpoint was the 1-year rate of target lesion revascularization (TLR), which was defined as any repeat percutaneous intervention or bypass surgery on the target vessel conducted to address restenosis or other complications related to the target lesion. The secondary endpoints including immediate luminal gain (ΔMLA, defined as the difference in minimum lumen area before and after the intervention). RESULTS: A total of 85 lesions in 75 patients were included. The mean age of the study population was 64.2 ± 12.0 years, with 81.3% male. Baseline clinical characteristics were well-balanced, and procedural success was 100% in both groups. The ELCA + DCB group (n = 24) exhibited a greater ΔMLA compared to the DCB group (n = 61) (3.57 ± 0.79 mm² vs. 2.50 ± 1.06 mm², [95% confidence interval, CI: 0.57-1.69], p < 0.001), The reduction in 1-year TLR was more frequently observed in patients from the ELCA + DCB group compared to the DCB group (hazard ratio 0.33 [95% CI: 0.11-0.99]; log-rank p = 0.048). The exploratory analysis showed that ELCA with contrast infusion is associated with greater acute lumen gain compared to ELCA with saline infusion (p < 0.001). CONCLUSIONS: The combination of ELCA and DCB is a safe and effective treatment strategy for in-stent stenosis. Additionally, compared with saline injection, ELCA with contrast injection is associated with greater acute lumen gain. However, the optimal contrast agent concentration and long-term outcome of the contrast injection technique need confirmation through larger sample sizes and prospective studies.


Asunto(s)
Angioplastia Coronaria con Balón , Reestenosis Coronaria , Láseres de Excímeros , Humanos , Masculino , Persona de Mediana Edad , Femenino , Reestenosis Coronaria/terapia , Reestenosis Coronaria/diagnóstico por imagen , Reestenosis Coronaria/etiología , Anciano , Láseres de Excímeros/uso terapéutico , Angioplastia Coronaria con Balón/instrumentación , Resultado del Tratamiento , Estudios Retrospectivos , Stents Liberadores de Fármacos , Tomografía de Coherencia Óptica , Terapia Combinada , Angioplastia de Balón Asistida por Láser
9.
Nanomaterials (Basel) ; 14(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38727404

RESUMEN

A novel biomass-based magnetic nanoparticle (Fe3O4-P-CMC/PAMAM) was synthesized by crosslinking carboxymethyl chitosan (CMC) and poly(amidoamine) (PAMAM), followed by phosphorylation with the incorporation of magnetic ferric oxide nanoparticles. The characterization results verified the successful functionalization and structural integrity of the adsorbents with a surface area of ca. 43 m2/g. Batch adsorption experiments revealed that the adsorbent exhibited a maximum adsorption capacity of 1513.47 mg·g-1 for U(VI) at pH 5.5 and 298.15 K, with Fe3O4-P-CMC/G1.5-2 showing the highest affinity among the series. The adsorption kinetics adhered to a pseudo-second-order model (R2 = 0.99, qe,exp = 463.81 mg·g-1, k2 = 2.15×10-2 g·mg-1·min-1), indicating a chemically driven process. Thermodynamic analysis suggested that the adsorption was endothermic and spontaneous (ΔH° = 14.71 kJ·mol-1, ΔG° = -50.63 kJ·mol-1, 298. 15 K), with increasing adsorption capacity at higher temperatures. The adsorbent demonstrated significant selectivity for U(VI) in the presence of competing cations, with Fe3O4-P-CMC/G1.5-2 showing a high selectivity coefficient. The performed desorption and reusability tests indicated that the adsorbent could be effectively regenerated using 1M HCl, maintaining its adsorption capacity after five cycles. XPS analysis highlighted the role of phosphonate and amino groups in the complexation with uranyl ions, and validated the existence of bimodal U4f peaks at 380.1 eV and 390.1 eV belonging to U 4f7/2 and U 4f5/2. The results of this study underscore the promise of the developed adsorbent as an effective and selective material for the treatment of uranium-contaminated wastewater.

10.
Indian J Ophthalmol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736244

RESUMEN

PURPOSE: The gut microbiota might be closely related to central retinal artery occlusion (CRAO), but the causality has not been well defined. Two-sample Mendelian randomization (MR) study was used to reveal the potential causal effect between the gut microbiota and CRAO. METHODS: Data for gut microbiota were obtained from the genome-wide association studies of the Dutch Microbiome Project (DMP) (n = 7738) and the MiBioGen consortium (n = 18,340), and data on CRAO were obtained from samples of FinnGen project (546 cases and 344,569 controls). Causalities of exposures and outcomes were explored mainly using the inverse variance weighted method. In addition, multiple sensitivity analyses including MR-Egger, weighted median (WM), simple mode, weighted mode, and MR Pleiotropy RESidual Sum and Outlier were simultaneously applied to validate the final results. RESULTS: We identified three microbial pathways (two risk factors/one protective factor) and seven microbial taxa (two risk factors/five protective factors) associated with CRAO in the DMP study. Based on the data from the MiBioGen consortium, we identified seven microbial taxa (two risk factors/five protective factors) associated with CRAO, including the Eubacterium genus, which was consistently identified as a risk factor in both the DMP and the MiBioGen consortium MR analyses. CONCLUSION: Our study implicates the potential causal effects of specific microbial taxa and pathways on CRAO, potentially providing new insights into the prevention and treatment of CRAO through specific gut microbial taxa and pathway. Since our conclusion is a hypothesis derived from secondary genome-wide association studies (GWAS) data analysis, further research is needed for confirmation.

11.
Phytochemistry ; 223: 114113, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697241

RESUMEN

Eleven undescribed cembrane-type diterpenoids, named litoamentenes A-K (1-11), were isolated from the soft coral Litophyton amentaceum collected from the South China Sea. Their structures were elucidated by extensive analysis of spectroscopic data, comparison with the literature data, single crystal X-ray diffraction, quantum chemical calculations and TDDFT-ECD calculations. This is the first systematic investigation of L. amentaceum. In particular, compounds 1-3 are cembrane-type norditerpenoids that lack isopropyl side chains. Compound 6 is a cembrane-type norditerpenoid without a methyl group at C-4, the first natural product identified with this carbon skeleton. Compounds 6, 9 and 10 showed modest cytotoxicity against several human cancer cell lines with IC50 values ranging from 3.99 to 14.56 µM.


Asunto(s)
Antozoos , Diterpenos , Ensayos de Selección de Medicamentos Antitumorales , Antozoos/química , Diterpenos/química , Diterpenos/farmacología , Diterpenos/aislamiento & purificación , Animales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , China , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Modelos Moleculares
12.
Commun Biol ; 7(1): 545, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714724

RESUMEN

CircRNAs are covalently closed, single-stranded RNA that form continuous loops and play a crucial role in the initiation and progression of tumors. Cancer stem cells (CSCs) are indispensable for cancer development; however, the regulation of cancer stem cell-like properties in gastric cancer (GC) and its specific mechanism remain poorly understood. We elucidate the specific role of Circ-0075305 in GC stem cell properties. Circ-0075305 associated with chemotherapy resistance was identified by sequencing GC cells. Subsequent confirmation in both GC tissues and cell lines revealed that patients with high expression of Circ-0075305 had significantly better overall survival (OS) rates than those with low expression, particularly when treated with postoperative adjuvant chemotherapy for GC. In vitro and in vivo experiments confirmed that overexpression of Circ-0075305 can effectively reduce stem cell-like properties and enhance the sensitivity of GC cells to Oxaliplatin compared with the control group. Circ-0075305 promotes RPRD1A expression by acting as a sponge for corresponding miRNAs. The addition of LF3 (a ß-catenin/TCF4 interaction antagonist) confirmed that RPRD1A inhibited the formation of the TCF4-ß-catenin transcription complex through competitive to ß-catenin and suppressed the transcriptional activity of stem cell markers such as SOX9 via the Wnt/ß-catenin signaling pathway. This leads to the downregulation of stem cell-like property-related markers in GC. This study revealed the underlying mechanisms that regulate Circ-0075305 in GCSCs and suggests that its role in reducing ß-catenin signaling may serve as a potential therapeutic candidate.


Asunto(s)
Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas , ARN Circular , Factor de Transcripción SOX9 , Neoplasias Gástricas , Factor de Transcripción 4 , beta Catenina , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Humanos , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , beta Catenina/metabolismo , beta Catenina/genética , ARN Circular/genética , ARN Circular/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Animales , Ratones , Línea Celular Tumoral , Ratones Desnudos , Masculino , Femenino , Resistencia a Antineoplásicos/genética , Ratones Endogámicos BALB C , Persona de Mediana Edad
13.
Materials (Basel) ; 17(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38591371

RESUMEN

By virtue of its narrow pulse width and high peak power, the femtosecond pulsed laser can achieve high-precision material modification, material additive or subtractive, and other forms of processing. With additional good material adaptability and process compatibility, femtosecond laser-induced application has achieved significant progress in flexible electronics in recent years. These advancements in the femtosecond laser fabrication of flexible electronic devices are comprehensively summarized here. This review first briefly introduces the physical mechanism and characteristics of the femtosecond laser fabrication of various electronic microdevices. It then focuses on effective methods of improving processing efficiency, resolution, and size. It further highlights the typical progress of applications, including flexible energy storage devices, nanogenerators, flexible sensors, and detectors, etc. Finally, it discusses the development tendency of ultrashort pulse laser processing. This review should facilitate the precision manufacturing of flexible electronics using a femtosecond laser.

14.
Behav Sci (Basel) ; 14(4)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38667064

RESUMEN

The nature of semantic representation has long been a key question in linguistic research. The Embodied Cognition theory challenges the traditional view of language representation, stating that semantic information stems from the sensory-motor cortex, which is activated automatically during semantic processing. However, most of the evidence comes from monolingual studies; it remains unclear whether second-language (L2) comprehension involves different semantic representations or mirrors the pattern seen in first-language (L1) processing. Therefore, the present study investigated the role of the sensory-motor system in language processing via making Electroencephalography (EEG) recordings during the processing of L1 and L2 action verbs. The results showed that L1 (Chinese) action verbs generated higher mu-event-related desynchronization (ERD) than L1 abstract verbs in the early processing stage (250 ms after verb presentation), and the same phenomenon was also observed for L2 (English). The results also indicated that language modulated the processing of action verbs, with L1 action verbs eliciting stronger ERD than L2 action verbs. These results demonstrate that the sensory-motor cortex plays a crucial role in comprehending both L1 and L2 action verbs.

15.
Mar Drugs ; 22(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38667762

RESUMEN

Four undescribed sesquiterpenoids, lemneolemnanes A-D (1-4), have been isolated from the marine soft coral Lemnalia sp. The absolute configurations of the stereogenic carbons of 1-4 were determined by single-crystal X-ray crystallographic analysis. Compounds 1 and 2 are epimers at C-3 and have an unusual skeleton with a formyl group on C-6. Compound 3 possesses an uncommonly rearranged carbon skeleton, while 4 has a 6/5/5 tricyclic system. Compound 1 showed significant anti-Alzheimer's disease (AD) activity in a humanized Caenorhabditis elegans AD pathological model.


Asunto(s)
Antozoos , Caenorhabditis elegans , Sesquiterpenos , Animales , Antozoos/química , Sesquiterpenos/farmacología , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Caenorhabditis elegans/efectos de los fármacos , Cristalografía por Rayos X , Enfermedad de Alzheimer/tratamiento farmacológico , Modelos Animales de Enfermedad , Humanos , Estructura Molecular
16.
Sci Rep ; 14(1): 7969, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575676

RESUMEN

Suppression of threading dislocations (TDs) in thin germanium (Ge) layers grown on silicon (Si) substrates has been critical for realizing high-performance Si-based optoelectronic and electronic devices. An advanced growth strategy is desired to minimize the TD density within a thin Ge buffer layer in Ge-on-Si systems. In this work, we investigate the impact of P dopants in 500-nm thin Ge layers, with doping concentrations from 1 to 50 × 1018 cm-3. The introduction of P dopants has efficiently promoted TD reduction, whose potential mechanism has been explored by comparing it to the well-established Sb-doped Ge-on-Si system. P and Sb dopants reveal different defect-suppression mechanisms in Ge-on-Si samples, inspiring a novel co-doping technique by exploiting the advantages of both dopants. The surface TDD of the Ge buffer has been further reduced by the co-doping technique to the order of 107 cm-2 with a thin Ge layer (of only 500 nm), which could provide a high-quality platform for high-performance Si-based semiconductor devices.

17.
J Sci Food Agric ; 104(10): 6062-6069, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38441143

RESUMEN

BACKGROUND: The objective of this investigation was to examine the impact of enzymatic hydrolysis of arabinoxylan (AX) on frozen dough quality under subfreezing conditions. The dough was subjected to freezing at -40 °C for 2 h and then stored at -9, -12, and -18 °C for 15 days. The water loss, freezable water content, water migration, and microstructure of the dough were measured. RESULTS: The dough containing 0.8% cellulase enzymatically hydrolyzed AX (CAX) required the shortest duration when traversing the maximum ice-crystal formation zone (6.5 min). The dough with xylanase enzymatically hydrolyzed AX (XAX) demonstrated a faster freezing rate than the dough with CAX. The inclusion of both XAX and CAX in the dough resulted in the lowest freezable water loss and reduced freezable water content and free-water content levels, whereas the inclusion of xylanase-cellulase combined with enzymatically hydrolyzed AX resulted in higher free-water content levels. The textural properties of the subfreezing temperature dough were not significantly different from the dough stored at -18 °C and sometimes even approached or surpassed the quality observed in the control group rather than the dough stored at -18 °C. In addition, the gluten network structure remains well preserved in XAX- and CAX-containing doughs with minimal starch damage. CONCLUSION: The enzymatic hydrolysis of AX from wheat bran can be used as a useful additive to improve the quality of frozen dough. © 2024 Society of Chemical Industry.


Asunto(s)
Harina , Congelación , Triticum , Xilanos , Xilanos/química , Xilanos/metabolismo , Hidrólisis , Harina/análisis , Triticum/química , Triticum/metabolismo , Agua/química , Celulasa/química , Celulasa/metabolismo , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Pan/análisis , Manipulación de Alimentos/métodos
18.
Discov Oncol ; 15(1): 66, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446289

RESUMEN

Serum amyloid A1 (SAA1), an inflammation-related molecule, is associated with the malignant progression of many tumors. This study aimed to investigate the role of SAA1 in the progression of esophageal squamous cell carcinoma (ESCC) and its molecular mechanisms. The expression of SAA1 in ESCC tissues and cell lines was analyzed using bioinformatics analysis, western blotting, and reverse transcription-quantitative PCR (RT‒qPCR). SAA1-overexpressing or SAA1-knockdown ESCC cells were used to assess the effects of SAA1 on the proliferation, migration, apoptosis of cancer cells and the growth of xenograft tumors in nude mice. Western blotting, immunofluorescence and RT‒qPCR were used to investigate the relationship between SAA1 and ß-catenin and SAA1 and sphingosine 1-phosphate (S1P)/sphingosine 1-phosphate receptor 1 (S1PR1). SAA1 was highly expressed in ESCC tissues and cell lines. Overexpression of SAA1 significantly promoted the proliferation, migration and the growth of tumors in nude mice. Knockdown of SAA1 had the opposite effects and promoted the apoptosis of ESCC cells. Moreover, SAA1 overexpression promoted the phosphorylation of ß-catenin at Ser675 and increased the expression levels of the ß-catenin target genes MYC and MMP9. Knockdown of SAA1 had the opposite effects. S1P/S1PR1 upregulated SAA1 expression and ß-catenin phosphorylation at Ser675 in ESCC cells. In conclusion, SAA1 promotes the progression of ESCC by increasing ß-catenin phosphorylation at Ser675, and the S1P/S1PR1 pathway plays an important role in its upstream regulation.

19.
Nutrients ; 16(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474868

RESUMEN

BACKGROUND: Healthy diets and physical exercise, two modifiable lifestyle factors, are protective against depression in older adults. This study aimed to investigate whether physical exercise may influence the associations of dietary habits with depression in Chinese community-dwelling older adults. METHODS: In the 2018 wave of the Chinese Longitudinal Healthy Longevity Survey, 12,708 community-dwelling older adults aged ≥65 years were included for analyses. Older adults' dietary habits (including daily intake of food components such as fruits, vegetables, animal oil, and so on) and physical exercise were assessed. Depression was evaluated via the 10 item Center for Epidemiologic Studies Depression (CES-D-10) scale. The influences of physical exercise on the associations of dietary habits with depression were estimated using logistic regression models adjusted for confounders. RESULTS: Older adults who took physical exercise had a significantly decreased probability of depression (adjusted OR = 0.73, p < 0.001). As for dietary habits, the intake of fruits, vegetables, eggs, nut products, mushrooms or algae, and vitamins were inversely associated with the prevalence of depression (adjusted ORs = 0.61-0.81; p-values: from <0.001 to 0.025), while animal oil was positively associated with it (adjusted OR = 1.52, p < 0.001). When stratified by physical exercise, older adults who ate fruits or vegetables had consistent decreased risk of depression, no matter whether they took physical exercise or not (adjusted ORs = 0.52-0.70), while the intake of eggs, nut products, and vitamins were inversely associated, and animal oil was consistently positively associated with depression only in older adults who did not take physical exercise (adjusted ORs = 0.79, 0.68, 0.63, and 1.67, respectively). CONCLUSIONS: Physical exercise may conceal the potential protective effects of some healthy dietary habits in terms of depression and counteract the detrimental effects of the unhealthy habits. Some dietary habits may be considered as alternative protective measures for depression in community-dwelling older adults when physical exercise cannot be performed.


Asunto(s)
Depresión , Vida Independiente , Animales , Estudios Transversales , Depresión/epidemiología , Dieta , Ejercicio Físico , Verduras , Vitaminas , Conducta Alimentaria , China
20.
Small Methods ; : e2400227, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546020

RESUMEN

Antimony selenide (Sb2Se3) consists of 1D (Sb4Se6)n ribbons, along which the carriers exhibit high transport efficiency. By adjusting the deposition parameters of vacuum-deposited methods, such as evaporation temperature, chamber pressure, and vapor concentration, it is possible to grow the (Sb4Se6)n ribbons vertically or highly inclined towards the substrate, resulting in films with [hk1] orientation. However, the specific mechanisms by which these deposition parameters affect the orientation of thin films require a deeper understanding. Herein, a molecular beam epitaxy technique is developed for the preparation of highly [hk1]-oriented Sb2Se3 films, and the effect of evaporation parameters on the film orientation is investigated. It is found that the evaporation temperature can affect the decomposition degree of Sb2Se3, which in turn determines the vapor composition and film orientation. Additionally, the decomposition of Sb2Se3 related to evaporation temperature leads to significant changes in the elemental composition of the film, thereby passivating deep-level defects under Se-rich conditions. Consequently, the Sb2Se3 films with highly [hk1] orientation achieve a power conversion efficiency of 8.42% for the solar cells. This study provides new insights into the control of orientation in antimony-based chalcogenide films and points out new directions for improving the photovoltaic performance of solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...