Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Genet Genomics ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871233

RESUMEN

miR-504 plays a pivotal role in the progression of oral cancer. However, the underlying mechanism remains elusive in vivo. Here, we find that miR-504 is significantly down-regulated in oral cancer patients. We generate miR-504 knockout mice (miR-504-/-) using CRISPR/Cas9 technology to investigate its impact on the malignant progression of oral cancer under exposure to 4-Nitroquinoline N-oxide (4NQO). We show that the deletion of miR-504 does not affect phenotypic characteristics, body weight, reproductive performance, or survival in mice, but results in changes in the blood physiological and biochemical indexes of the mice. Moreover, with 4NQO treatment, miR-504-/- mice exhibit more pronounced pathological changes characteristic of oral cancer. RNA-seq shows that the differentially expressed genes observed in samples from miR-504-/- mice with oral cancer are involved in regulating cell metabolism, cytokine activation, and lipid metabolism-related pathways. Additionally, these differentially expressed genes are significantly enriched in lipid metabolism pathways that influence immune cell infiltration within the tumor microenvironment, thereby accelerating tumor development progression. Collectively, our results suggest that knockout of miR-504 accelerates malignant progression in 4NQO-induced oral cancer by regulating tumor cell proliferation and lipid metabolism affecting immune cell infiltration.

2.
Sci Rep ; 14(1): 11026, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744903

RESUMEN

Currently, the relationship between household size and incident dementia, along with the underlying neurobiological mechanisms, remains unclear. This prospective cohort study was based on UK Biobank participants aged ≥ 50 years without a history of dementia. The linear and non-linear longitudinal association was assessed using Cox proportional hazards regression and restricted cubic spline models. Additionally, the potential mechanisms driven by brain structures were investigated by linear regression models. We included 275,629 participants (mean age at baseline 60.45 years [SD 5.39]). Over a mean follow-up of 9.5 years, 6031 individuals developed all-cause dementia. Multivariable analyses revealed that smaller household size was associated with an increased risk of all-cause dementia (HR, 1.06; 95% CI 1.02-1.09), vascular dementia (HR, 1.08; 95% CI 1.01-1.15), and non-Alzheimer's disease non-vascular dementia (HR, 1.09; 95% CI 1.03-1.14). No significant association was observed for Alzheimer's disease. Restricted cubic splines demonstrated a reversed J-shaped relationship between household size and all-cause and cause-specific dementia. Additionally, substantial associations existed between household size and brain structures. Our findings suggest that small household size is a risk factor for dementia. Additionally, brain structural differences related to household size support these associations. Household size may thus be a potential modifiable risk factor for dementia.


Asunto(s)
Demencia , Composición Familiar , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encéfalo/patología , Demencia/epidemiología , Demencia/etiología , Incidencia , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo , Biobanco del Reino Unido , Reino Unido/epidemiología
3.
Stroke ; 55(3): 660-669, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38299341

RESUMEN

BACKGROUND: Our primary objective was to assess the association between joint exposure to various air pollutants and the risk of ischemic stroke (IS) and the modification of the genetic susceptibility. METHODS: This observational cohort study included 307 304 British participants from the United Kingdom Biobank, who were stroke-free and possessed comprehensive baseline data on genetics, air pollutant exposure, alcohol consumption, and dietary habits. All participants were initially enrolled between 2006 and 2010 and were followed up until 2022. An air pollution score was calculated to assess joint exposure to 5 ambient air pollutants, namely particulate matter with diameters equal to or <2.5 µm, ranging from 2.5 to 10 µm, equal to or <10 µm, as well as nitrogen oxide and nitrogen dioxide. To evaluate individual genetic risk, a polygenic risk score for IS was calculated for each participant. We adjusted for demographic, social, economic, and health covariates. Cox regression models were utilized to estimate the associations between air pollution exposure, polygenic risk score, and the incidence of IS. RESULTS: Over a median follow-up duration of 13.67 years, a total of 2476 initial IS events were detected. The hazard ratios (95% CI) of IS for per 10 µg/m3 increase in particulate matter with diameters equal to or <2.5 µm, ranging from 2.5 to 10 µm, equal to or <10 µm, nitrogen dioxide, and nitrogen oxide were 1.73 (1.33-2.14), 1.24 (0.88-1.70), 1.13 (0.89-1.33), 1.03 (0.98-1.08), and 1.04 (1.02-1.07), respectively. Furthermore, individuals in the highest quintile of the air pollution score exhibited a 29% to 66% higher risk of IS compared with those in the lowest quintile. Notably, participants with both high polygenic risk score and air pollution score had a 131% (95% CI, 85%-189%) greater risk of IS than participants with low polygenic risk score and air pollution score. CONCLUSIONS: Our findings suggested that prolonged joint exposure to air pollutants may contribute to an increased risk of IS, particularly among individuals with elevated genetic susceptibility to IS.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Accidente Cerebrovascular Isquémico , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Accidente Cerebrovascular Isquémico/inducido químicamente , Biobanco del Reino Unido , Bancos de Muestras Biológicas , Material Particulado/efectos adversos , Material Particulado/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Óxidos de Nitrógeno , Óxido Nítrico , Puntuación de Riesgo Genético , Exposición a Riesgos Ambientales/efectos adversos
4.
Physiol Plant ; 175(6): e14072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148219

RESUMEN

Under global warming, the availability of water resources is one of the most important factors affecting trait evolution and plant species distribution across terrestrial ecosystems, and the relationships between drought resistance strategies and the hydrological niche characteristics of plants are worth studying. We continuously monitored physiological drought response parameters such as gs , Tr , proline, soluble sugar, gene expression and activities of SOD, POD, and CAT to assess drought resistance strategies of Platycarya longipes and Lindera communis; determined plant soil hydrological niche separation by stable H and O isotope analysis; and analysed the effects of interspecific water competition by comparing the differences in morphological and physiological parameters between solo and mixed planting. Under drought stress, L. communis exhibited a drought avoidance strategy, and P. longipes exhibited a drought tolerance strategy. L. communis utilized the water within the shallow soil layer, while P. longipes mainly utilized the water in the deeper soil layer; there were fewer parameters with significant differences between the solo planting and the mixed planting of L. communis compared to P. longipes. Overall, P. longipes benefited from coexistence with L. communis under drought stress, which may be because L. communis employs a drought avoidance strategy, reducing soil water consumption in the drought environment. These results suggested that differences in functional traits or resistance strategies among species benefit species' coexistence in a community under drought stress.


Asunto(s)
Sequías , Ecosistema , Suelo , Plantas/metabolismo , Agua/metabolismo
5.
Biomolecules ; 13(10)2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37892146

RESUMEN

There has been a growing interest in studying the communication of gut microbial metabolites between the gut and the liver as liver fibrosis progresses. Although 3-Indolepropionic acid (IPA) is regarded as a clinically valuable gut metabolite for the treatment of certain chronic diseases, the effects of oral administration of IPA on hepatic fibrosis in different animal models have been conflicting. While some mechanisms have been proposed to explain these contradictory effects, the direct impact of IPA on hepatic fibrosis remains unclear. In this study, we found that IPA could directly activate LX-2 human hepatic stellate cells in vitro. IPA upregulated the expression of fibrogenic marker genes and promoted the features associated with HSCs activation, including proliferation and contractility. IPA also increased reactive oxygen species (ROS) in mitochondria and the expression of inflammation-related genes in LX-2 cells. However, when a ROS-blocking agent was used, these effects were reduced. p38 and JNK, the downstream signaling cascades of ROS, were found to be required for the activation of LX-2 induced by IPA. These findings suggest that IPA can directly activate hepatic stellate cells through ROS-induced JNK and p38 signaling pathways.


Asunto(s)
Microbioma Gastrointestinal , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Células Estrelladas Hepáticas , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Transducción de Señal
6.
Hum Vaccin Immunother ; 19(2): 2257989, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37813849

RESUMEN

Cervical cancer is the fourth most common cancer in women, with a high disease burden worldwide. Human papillomavirus (HPV) vaccination reduces HPV-related infection and associated cervical lesions and cancers. Few studies have explored HPV vaccination impact in real-world settings in China. This study aims to monitor HPV vaccine uptake and its effects on HPV-related diseases, evaluating vaccine effectiveness in a real-world context and complementing clinical trial results. Electronic health records (EHRs) from 2010 to 2020 from the Yinzhou Regional Health Information Platform (YRHIP) will be queried/extracted to identify and monitor HPV vaccine uptake in females aged 9-45 years, and HPV-related screening and prevalence (i.e., cervical HPV infection, cervical intraepithelial neoplasia [CIN] grades 1-3, and cervical cancer) in a cohort of females aged 9-70 years. Cervical cancer screening guidelines and expert consultation will be used for intra-database validation, to determine the best algorithm for identifying HPV-related disease. Pre-launch (2010-2016) and post-launch (2018-2020) periods are predefined. A time trend analysis will be performed to describe the vaccination impact on disease prevalence and, if prerequisite conditions are met, vaccine effectiveness will be computed using logistic regression, adjusting for age, calendar year, history of screening and HPV infection. Cohort study design, outcomes validation, data linkage, and multi-step statistical analyses could provide valuable experience for designing other real-world studies in the future. The study outcomes can help inform policy-makers about uptake and HPV vaccination policy in girls and women in Yinzhou District, and provide insights on progress toward achieving goals set by the World Health Organization.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/epidemiología , Neoplasias del Cuello Uterino/prevención & control , Virus del Papiloma Humano , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/prevención & control , Infecciones por Papillomavirus/complicaciones , Estudios de Cohortes , Registros Electrónicos de Salud , Películas Cinematográficas , Detección Precoz del Cáncer , Vacunación , China/epidemiología
8.
Front Immunol ; 14: 1138524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234166

RESUMEN

Background: Forkhead box M1 (FOXM1) is a member of the Forkhead box (Fox) transcription factor family. It regulates cell mitosis, cell proliferation, and genome stability. However, the relationship between the expression of FOXM1 and the levels of m6a modification, immune infiltration, glycolysis, and ketone body metabolism in HCC has yet to be fully elucidated. Methods: Transcriptome and somatic mutation profiles of HCC were downloaded from the TCGA database. Somatic mutations were analyzed by maftools R package and visualized in oncoplots. GO, KEGG and GSEA function enrichment was performed on FOXM1 co-expression using R. We used Cox regression and machine learning algorithms (CIBERSORT, LASSO, random forest, and SVM-RFE) to study the prognostic value of FOXM1 and immune infiltrating characteristic immune cells in HCC. The relationship between FOXM1 and m6A modification, glycolysis, and ketone body metabolism were analyzed by RNA-seq and CHIP-seq. The competing endogenous RNA (ceRNA) network construction relies on the multiMiR R package, ENCORI, and miRNET platforms. Results: FOXM1 is highly expressed in HCC and is associated with a poorer prognosis. At the same time, the expression level of FOXM1 is significantly related to the T, N, and stage. Subsequently, based on the machine learning strategies, we found that the infiltration level of T follicular helper cells (Tfh) was a risk factor affecting the prognosis of HCC patients. The high infiltration of Tfh was significantly related to the poor overall survival rate of HCC. Besides, the CHIP-seq demonstrated that FOXM1 regulates m6a modification by binding to the promoter of IGF2BP3 and affects the glycolytic process by initiating the transcription of HK2 and PKM in HCC. A ceRNA network was successfully obtained, including FOXM1 - has-miR-125-5p - DANCR/MIR4435-2HG ceRNA network related to the prognosis of HCC. Conclusion: Our study implicates that the aberrant infiltration of Tfh associated with FOXM1 is a crucial prognostic factor for HCC patients. FOXM1 regulates genes related to m6a modification and glycolysis at the transcriptional level. Furthermore, the specific ceRNA network can be used as a potential therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Algoritmos , Carcinoma Hepatocelular/genética , Proteína Forkhead Box M1/genética , Factores de Transcripción Forkhead/genética , Glucólisis/genética , Cetonas , Neoplasias Hepáticas/genética
9.
Front Microbiol ; 14: 1117905, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228368

RESUMEN

Functional constipation (FC) is a high morbidity gastrointestinal disease for which dysfunction in the enteric nervous system is a major pathogenesis mechanism. To enhance our understanding of the involvement of intestinal microbiota and its metabolites in the pathogenesis of FC, we conducted a shotgun metagenomic sequencing analysis of gut microbiota and serum short-chain fatty acids (SCFAs) analysis in 460 Chinese women with different defecation frequencies. We observed that the abundance ofFusobacterium_varium, a butyric acid-producing bacterium, was positively correlated (P = 0.0096) with the frequency of defecation; however, the concentrations of serum butyric acid was negatively correlated (P = 3.51E-05) with defecation frequency. These results were verified in an independent cohort (6 patients with FC and 6 controls). To further study the effects of butyric acid on intestinal nerve cells, we treated mouse intestinal neurons in vitro with various concentrations of butyrate (0.1, 0.5, 1, and 2.5 mM). We found that intestinal neurons treated with 0.5 mM butyrate proliferated better than those in the other treatment groups, with significant differences in cell cycle and oxidative phosphorylation signal pathways. We suggest that the decreased butyrate production resulting from the reduced abundance of Fusobacterium in gut microbiota affects the proliferation of intestinal neurons and the energy supply of intestinal cells. However, with FC disease advancing, the consumption and excretion of butyric acid reduce, leading to its accumulation in the intestine. Moreover, the accumulation of an excessively high amount of butyric acid inhibits the proliferation of nerve cells and subsequently exacerbates the disease.

10.
Expert Rev Vaccines ; 22(1): 307-314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938990

RESUMEN

BACKGROUND: Monitoring the risk of intussusception after the introduction of rotavirus vaccines is recommended by the World Health Organization (WHO). Although the validity of intussusception monitoring using electronic health records (EHRs) has been confirmed previously, no similar studies have been conducted in China. We aimed to verify the diagnosis and determine an algorithm with the best performance for identification of intussusception using Chinese EHR databases. RESEARCH DESIGN AND METHODS: Using the Regional Health Information Platform in Ningbo, patients aged 0-72 months from 2015 to 2021 with any related visits for intussusception were included. The algorithms were based on diagnostic codes or keywords in different clinical scenarios, and their performance was evaluated with positive predictive value (PPV) and sensitivity in line with the Brighton guidelines. RESULTS: Brighton level 1 intussusception was confirmed in 2958 patients with 3246 episodes. Fine-tuned algorithms combining the appearance of the relevant ICD-10 codes or the Chinese keyword 'Chang Tao' in any diagnostic reports with the results of enema treatments or related surgeries showed the highest sensitivity, while the highest PPV was obtained by further criteria based on typical radiographic appearances. CONCLUSION: Intussusception could be identified and validated internally using EHRs in Ningbo.


Asunto(s)
Registros Electrónicos de Salud , Intususcepción , Humanos , Niño , Intususcepción/diagnóstico , Intususcepción/epidemiología , Valor Predictivo de las Pruebas , Algoritmos , China/epidemiología
11.
BMC Cancer ; 23(1): 162, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800936

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a common malignant tumor associated with poor prognosis. MicroRNAs (miRNAs) play crucial regulatory roles in the cancer development. However, the role of miRNAs in OSCC development and progression is not well understood. METHODS: We sought to establish a dynamic Chinese hamster OSCC animal model, construct miRNA differential expression profiles of its occurrence and development, predict its targets, and perform functional analysis and validation in vitro. RESULTS: Using expression and functional analyses, the key candidate miRNA (miR-181a-5p) was selected for further functional research, and the expression of miR-181a-5p in OSCC tissues and cell lines was detected. Subsequently, transfection technology and a nude mouse tumorigenic model were used to explore potential molecular mechanisms. miR-181a-5p was significantly downregulated in human OSCC specimens and cell lines, and decreased miR-181a-5p expression was observed in multiple stages of the Chinese hamster OSCC animal model. Moreover, upregulated miR-181a-5p significantly inhibited OSCC cell proliferation, colony formation, invasion, and migration; blocked the cell cycle; and promoted apoptosis. BCL2 was identified as a target of miR-181a-5p. BCL2 may interact with apoptosis- (BAX), invasion- and migration- (TIMP1, MMP2, and MMP9), and cell cycle-related genes (KI67, E2F1, CYCLIND1, and CDK6) to further regulate biological behavior. Tumor xenograft analysis indicated that tumor growth was significantly inhibited in the high miR-181a-5p expression group. CONCLUSION: Our findings indicate that miR-181a-5p can be used as a potential biomarker and provide a novel animal model for mechanistic research on oral cancer.


Asunto(s)
MicroARNs , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Cricetinae , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Cricetulus , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Boca/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo
12.
Front Endocrinol (Lausanne) ; 13: 957010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465614

RESUMEN

Background: Effectively predicting the risk of adverse pregnancy outcome (APO) in women with systemic lupus erythematosus (SLE) during early and mid-pregnancy is a challenge. This study was aimed to identify potential markers for early prediction of APO risk in women with SLE. Methods: The GSE108497 gene expression dataset containing 120 samples (36 patients, 84 controls) was downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA) was performed, and differentially expressed genes (DEGs) were screened to define candidate APO marker genes. Next, three individual machine learning methods, random forest, support vector machine-recursive feature elimination, and least absolute shrinkage and selection operator, were combined to identify feature genes from the APO candidate set. The predictive performance of feature genes for APO risk was assessed using area under the receiver operating characteristic curve (AUC) and calibration curves. The potential functions of these feature genes were finally analyzed by conventional gene set enrichment analysis and CIBERSORT algorithm analysis. Results: We identified 321 significantly up-regulated genes and 307 down-regulated genes between patients and controls, along with 181 potential functionally associated genes in the WGCNA analysis. By integrating these results, we revealed 70 APO candidate genes. Three feature genes, SEZ6, NRAD1, and LPAR4, were identified by machine learning methods. Of these, SEZ6 (AUC = 0.753) showed the highest in-sample predictive performance for APO risk in pregnant women with SLE, followed by NRAD1 (AUC = 0.694) and LPAR4 (AUC = 0.654). After performing leave-one-out cross validation, corresponding AUCs for SEZ6, NRAD1, and LPAR4 were 0.731, 0.668, and 0.626, respectively. Moreover, CIBERSORT analysis showed a positive correlation between regulatory T cell levels and SEZ6 expression (P < 0.01), along with a negative correlation between M2 macrophages levels and LPAR4 expression (P < 0.01). Conclusions: Our preliminary findings suggested that SEZ6, NRAD1, and LPAR4 might represent the useful genetic biomarkers for predicting APO risk during early and mid-pregnancy in women with SLE, and enhanced our understanding of the origins of pregnancy complications in pregnant women with SLE. However, further validation was required.


Asunto(s)
Lupus Eritematoso Sistémico , Complicaciones del Embarazo , Resultado del Embarazo , Femenino , Humanos , Embarazo , Área Bajo la Curva , Marcadores Genéticos/genética , Lupus Eritematoso Sistémico/genética , Resultado del Embarazo/genética , Curva ROC , ARN Largo no Codificante/genética , Proteínas del Tejido Nervioso/genética , Complicaciones del Embarazo/genética
13.
Oral Dis ; 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36251494

RESUMEN

OBJECTIVE: microRNA-450b (miR-450b) plays an important role in cancer progression; however, its function in oral squamous cell carcinoma (OSCC) remains largely unknown. This study aimed to investigate the action mechanisms of miR-450b in OSCC. MATERIALS AND METHODS: OSCC animal model was established via continuous induction with single-drug 7, 12-dimethylbenzo[a]anthracene (DMBA). Animal tissue samples were pathologically typed using haematoxylin-eosin (HE) staining. The Cancer Genome Atlas (TCGA) database was used to predict miR-450b and SERPINB2 expression in head and neck squamous cell carcinoma (HNSCC). qRT-PCR and Western blotting were used to detect gene and protein expression in OSCC tissue and cells, respectively. OSCC cell proliferation, growth, migration and invasion were detected using CCK-8, colony formation, transwell migration and matrigel invasion assays, respectively. Bioinformatic tools were used to predict miR-450b target genes. Dual-luciferase reporter assay was used to verify targeting between miR-450b and SERPINB2. Finally, small interfering RNA (siRNA) was used to reduce SERPINB2 expression to detect its effect on tumourigenesis. RESULTS: Four stages of OSCC carcinogenesis (normal oral epithelium, simple epithelial hyperplasia, dysplasia and OSCC) were identified. miR-450b was found to be overexpressed in OSCC animal samples, HNSCC samples and human OSCC cells. Upregulation of miR-450b significantly promoted OSCC cell proliferation, colony formation, migration and invasion, while its downregulation had the opposite effect. SERPINB2 was found to be a miR-450b target gene, and its expression was negatively correlated with miR-450b expression. Altering SERPINB2 expression effectively inhibited OSCC cell invasion, metastasis and epithelial-mesenchymal transition (EMT). CONCLUSIONS: miR-450b plays a key role in OSCC tumourigenesis by regulating OSCC cell migration, invasion and EMT via SERPINB2.

14.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1528-1539, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36239352

RESUMEN

Alzheimer's disease (AD) is a progressive and degenerative disorder accompanied by cognitive decline, which could be promoted by mitochondrial dysfunction induced by mitochondrial Ca 2+ (mCa 2+) homeostasis Mitochondrial calcium uniporter (MCU), a key channel of mCa 2+ uptake, may be a target for AD treatment. In the present study, we reveal for the first time that MCU knockdown in hippocampal neurons improves the memory performance of APP/PS1/tau mice through radial arm maze task. Western blot analysis, transmission electron microscopy (TEM), Golgi staining, immunohistochemistry (IHC) and ELISA results demonstrate that MCU knockdown in hippocampal neurons upregulates the levels of postsynaptic density protein 95 (PSD95) and synaptophysin (SYP), and increases the numbers of synapses and dendritic spines. Meanwhile, MCU knockdown in hippocampal neurons decreases the neuroinflammatory response induced by astrogliosis and high levels of IL-1ß and TNF-α, and improves the PINK1-Parkin mitophagy signaling pathway and increases the level of Beclin-1 but decreases the level of P62. In addition, MCU knockdown in hippocampal neurons recovers the average volume and number of mitochondria. These data confirm that MCU knockdown in hippocampal neurons improves the memory performance of APP/PS1/tau mice through ameliorating the synapse structure and function, relieving the inflammation response and recovering mitophagy, indicating that MCU inhibition has the potential to be developed as a novel therapy for AD.


Asunto(s)
Enfermedad de Alzheimer , Canales de Calcio , Memoria , Neuronas , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Canales de Calcio/genética
15.
Mol Biol Rep ; 49(10): 9575-9584, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35980530

RESUMEN

BACKGROUND: The CRISPR/Cas9 system is widely used for genome editing in human, rat and mouse cells. In this study, we established Fzd6 mutant mice using CRISPR/Cas9 technology, and obtained Fzd6 homozygous mutant (Fzd6Q152E) mice through breeding. Fzd6 plays a role in depression, but there are few related reports. We used this model to investigate the mechanism of Fzd6 involved in depression, and build a solid foundation for subsequent in-depth studies. METHODS AND RESULTS: The target of Fzd6 mutation was obtained by CRISPR/Cas9 technology and hippocampal tissue was collected for Nissl staining and histological analysis. Blood was collected for enzyme linked immunosorbent assay (ELISA); The gene expression of Fzd6 and the related genes expression in wnt pathway was quantified by quantitative real-time PCR (qRT-PCR), and then expression of Fzd6 and proteins in the Wnt pathway were identified by western blotting. ELISA results showed that the expression levels of brain derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), and Noradrenaline (NE) in serum were significantly decreased in Fzd6Q152E mice, whereas the mRNA expression of Lrp5, Lrp6, and Dkk2 is increased. The western blotting revealed that the expression of Fzd6 and Lrp6 is decreased, although the expression of Dkk2 and Gsk-3ß increased. CONCLUSION: Our study successfully established homozygous Fzd6 mutant mice model. The relationship between Fzd6-Wnt and depression was preliminarily clarified, which provides an ideal animal model for subsequent research on diseases induced by the Fzd6 mutation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Sistemas CRISPR-Cas , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Sistemas CRISPR-Cas/genética , Receptores Frizzled/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Ratones , Norepinefrina , ARN Mensajero , Ratas , Reproducción , Serotonina , Tecnología
16.
J Ovarian Res ; 15(1): 31, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227295

RESUMEN

BACKGROUND: Premature ovarian insufficiency (POI) plagues 1% of women under 40, while quite a few remain an unknown cause. The development of sequencing has helped find pathogenic genes and reveal the relationship between DNA repair and ovarian reserve. Through the exome sequencing, our study targets screening out the possible POI pathogenic gene and variants in a Chinese family and 20 sporadic POI patients, preliminarily exploring the functional impact and finding out potential linkages between the gene and POI. RESULTS: The whole exome sequencing suggested a novel FMN2 heterozygous variant c.1949C > T (p.Ser650Leu) carried by all three patients in a Chinese family and another c.1967G > A(p.Arg656His) variant in a sporadic case. Since no FMN2 missense mutation is reported for causing human POI, we preliminarily assessed p.Ser650Leu variant via cross-species alignment and 3D modeling and found it possibly deleterious. A series of functional evidence was consistent with our hypothesis. We proved the expression of FMN2 in different stages of oocytes and observed a statistical difference of chromosomal breakages between the POI patient carrying p.Arg656His variant and the health control (p = 0.0013). Western Blot also suggested a decrease in FMN2 and P21 in the mutant type and an associated increase in H2AX. The p.Arg656His variant with an extremely low frequency also indicated that the gene FMN2 might play an essential role in the genetic etiology of POI. To the best of our knowledge, this is the first POI report on missense variants of FMN2. CONCLUSION: This finding indicates a novel gene possibly related to POI and sheds lights on the study of FMN2.


Asunto(s)
Forminas/genética , Forminas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Insuficiencia Ovárica Primaria/genética , Adulto , Reparación del ADN/genética , Femenino , Feto/metabolismo , Heterocigoto , Histonas/sangre , Humanos , Linfocitos/metabolismo , Estructura Molecular , Mutación Missense , Ovario/metabolismo , Linaje , Insuficiencia Ovárica Primaria/sangre , Secuenciación del Exoma
17.
J Alzheimers Dis ; 83(2): 799-818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366339

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a degenerative disorder, accompanied by progressive cognitive decline, for which there is no cure. Recently, the close correlation between AD and type 2 diabetes mellitus (T2DM) has been noted, and a promising anti-AD strategy is the use of anti-T2DM drugs. OBJECTIVE: To investigate if the novel glucagon-like peptide-1 (GLP-1)/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist DA4-JC shows protective effects in the triple APP/PS1/tau mouse model of AD. METHODS: A battery of behavioral tests were followed by in vivo recording of long-term potentiation (LTP) in the hippocampus, quantified synapses using the Golgi method, and biochemical analysis of biomarkers. RESULTS: DA4-JC improved cognitive impairment in a range of tests and relieved pathological features of APP/PS1/tau mice, enhanced LTP in the hippocampus, increased numbers of synapses and dendritic spines, upregulating levels of post-synaptic density protein 95 (PSD95) and synaptophysin (SYP), normalized volume and numbers of mitochondria and improving the phosphatase and tensin homologue induced putative kinase 1 (PINK1) - Parkin mitophagy signaling pathway, while downregulating amyloid, p-tau, and autophagy marker P62 levels. CONCLUSION: DA4-JC is a promising drug for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Disfunción Cognitiva/prevención & control , Diabetes Mellitus Tipo 2/complicaciones , Homólogo 4 de la Proteína Discs Large/genética , Péptido 1 Similar al Glucagón/agonistas , Potenciación a Largo Plazo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Sinapsis/metabolismo
18.
Biol Reprod ; 104(6): 1282-1291, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33709118

RESUMEN

Zona pellucida (ZP), which is composed of at most four extracellular glycoproteins (ZP1, ZP2, ZP3, and ZP4) in mammals, shelters the oocytes and is vital in female fertility. Several studies have identified the indispensable roles of ZP1-3 in maintaining normal female fertility. However, the understanding of ZP4 is still very poor because only one study on ZP4-associated infertility performed in rabbits has been reported up to date. Here we investigated the function of mammalian Zp4 by creating a knockout (KO) rat strain (Zp4-/- rat) using CRISPR-Cas9-mediated DNA-editing method. The influence of Zp4 KO on ZP morphology and some pivotal processes of reproduction, including oogenesis, ovulation, fertilization, and pup production, were studied using periodic acid-Schiff's staining, superovulation, in vitro fertilization, and natural mating. The ZP morphology in Zp4-/- rats was normal, and none of these pivotal processes was affected. This study renewed the knowledge of mammalian Zp4 by suggesting that Zp4 was completely dispensable for female fertility.


Asunto(s)
Fertilidad/genética , Fertilización , Ratas/fisiología , Glicoproteínas de la Zona Pelúcida/genética , Animales , Femenino , Edición Génica , Ratas/genética , Glicoproteínas de la Zona Pelúcida/metabolismo
19.
J Alzheimers Dis ; 80(2): 695-713, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33579843

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function. Type 2 diabetes mellitus (T2DM) is an important risk factor for AD. Glucose-dependent insulinotropic polypeptide (GIP) has been identified to be effective in T2DM treatment and neuroprotection. OBJECTIVE: The present study investigated the neuroprotective effects and possible mechanisms of DAla2GIP-Glu-PAL, a novel long-lasting GIP analogue, in APP/PS1 AD mice. METHODS: Multiple behavioral tests were performed to examine the cognitive function of mice. In vivo hippocampus late-phase long-term potentiation (L-LTP) was recorded to reflect synaptic plasticity. Immunohistochemistry and immunofluorescence were used to examine the Aß plaques and neuroinflammation in the brain. IL-1ß, TNF-α, and cAMP/PKA/CREB signal molecules were also detected by ELISA or western blotting. RESULTS: DAla2GIP-Glu-PAL increased recognition index (RI) of APP/PS1 mice in novel object recognition test, elevated spontaneous alternation percentage of APP/PS1 mice in Y maze test, and increased target quadrant swimming time of APP/PS1 mice in Morris water maze test. DAla2GIP-Glu-PAL treatment enhanced in vivo L-LTP of APP/PS1 mice. DAla2GIP-Glu-PAL significantly reduced Aß deposition, inhibited astrocyte and microglia proliferation, and weakened IL-1ß and TNF-α secretion. DAla2GIP-Glu-PAL also upregulated cAMP/PKA/CREB signal transduction and inhibited NF-κB activation in the hippocampus of APP/PS1 mice. CONCLUSION: DAla2GIP-Glu-PAL can improve cognitive behavior, synaptic plasticity, and central pathological damage in APP/PS1 mice, which might be associated with the inhibition of neuroinflammation, as well as upregulation of cAMP-/PKA/CREB signaling pathway. This study suggests a potential benefit of DAla2GIP-Glu-PAL in the treatment of AD.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Polipéptido Inhibidor Gástrico/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Cognición/efectos de los fármacos , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/patología , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Placa Amiloide/patología
20.
Comput Intell Neurosci ; 2021: 6668859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35530739

RESUMEN

In brain-computer interface (BCI), feature extraction is the key to the accuracy of recognition. There is important local structural information in the EEG signals, which is effective for classification; and this locality of EEG features not only exists in the spatial channel position but also exists in the frequency domain. In order to retain sufficient spatial structure and frequency information, we use one-versus-rest filter bank common spatial patterns (OVR-FBCSP) to preprocess the data and extract preliminary features. On this basis, we conduct research and discussion on feature extraction methods. One-dimensional feature extraction methods like linear discriminant analysis (LDA) may destroy this kind of structural information. Traditional manifold learning methods or two-dimensional feature extraction methods cannot extract both types of information at the same time. We introduced the bilinear structure and matrix-variate Gaussian model into two-dimensional discriminant locality preserving projection (2DDLPP) algorithm and decompose EEG signals into spatial and spectral parts. Afterwards, the most discriminative features were selected through a weight calculation method. We tested the method on BCI competition data sets 2a, data sets IIIa, and data sets collected by our laboratory, and the results were expressed in terms of recognition accuracy. The cross-validation results were 75.69%, 70.46%, and 54.49%, respectively. The average recognition accuracy of new method is improved by 7.14%, 7.38%, 4.86%, and 3.8% compared to those of LDA, two-dimensional linear discriminant analysis (2DLDA), discriminant locality property projections (DLPP), and 2DDLPP, respectively. Therefore, we consider that the proposed method is effective for EEG classification.


Asunto(s)
Interfaces Cerebro-Computador , Algoritmos , Análisis Discriminante , Electroencefalografía/métodos , Imaginación , Distribución Normal , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...