Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cardiovasc Diagn Ther ; 14(1): 72-83, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434568

RESUMEN

Background: In recent years, a mass of studies have shown that pyroptosis plays an important role in the proliferation of vascular smooth muscle cells (VSMCs). We investigated whether angiotensin II (Ang II) induces the pyroptosis of rat aortic VSMCs and the role of NOD-like receptor family pyrin domain containing 3 (NLRP3) in this process. Additionally, we explored the effect and related mechanism of recombinant tissue factor pathway inhibitor (rTFPI) in Ang II-induced VSMC pyroptosis. Methods: Cultured VSMCs were divided into five groups: control group, Ang II group (1×10-5 mol/L), MCC950 group (NLRP3 inhibitor, 15 nmol/L), Ang II + MCC950 group and Ang II + rTFPI (50 µg/L) group. Cell viability was measured by cell counting kit-8 (CCK8) assays and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays. Propidium iodide (PI) staining and immunofluorescence were performed to determine the pyroptosis of VSMCs. Changes in VSMC ultrastructure were evaluated through transmission electron microscopy. The expression levels of NLRP3, pro-caspase-1, gasdermin D-N (GSDMD-N), and interleukin-1ß (IL-1ß) were determined by western blot analysis. Results: The cell viability, the positive rate of PI staining, and the expression level of GSDMD detected by immunofluorescence in the Ang II group were higher than that in the control group, whereas they all decreased in Ang II + MCC950 group and Ang II + rTFPI group compared with Ang II group (P<0.05). Electron microscopy analysis revealed less extracellular matrix, increased myofilaments, and decreased endoplasmic reticulum, Golgi complex, and mitochondria in Ang II + rTFPI-treated VSMCs than in Ang II-treated VSMCs. The protein expression levels of the pyroptosis-related molecules NLRP3, pro-caspase-1, GSDMD-N, and IL-1ß in Ang II group showed an increasing trend compared with those in control group (P<0.05); however, these expression levels in Ang II + MCC950 and Ang II + rTFPI groups were significantly lower than those in Ang II group (P<0.05). Conclusions: Ang II may induce pyroptosis in VSMCs by activating NLRP3. rTFPI can inhibit Ang II-induced VSMC pyroptosis. Furthermore, rTFPI might exert this effect by inhibiting the NLRP3 pathway and therefore play an important role in the treatment of vascular remodeling induced by hypertension.

2.
J. physiol. biochem ; 80(1): 113-126, Feb. 2024. ilus, graf
Artículo en Inglés | IBECS | ID: ibc-EMG-570

RESUMEN

The global prevalence and incidence of non-alcoholic fatty liver disease (NAFLD) are exhibiting an increasing trend. NAFLD is characterized by a significant accumulation of lipids, though its underlying mechanism is still unknown. Here we report that high-fat diet (HFD) feeding induced hepatic steatosis in mice, which was accompanied by a reduction in the expression and function of hepatic TRPV2. Moreover, conditional knockout of TRPV2 in hepatocytes exacerbated HFD-induced hepatic steatosis. In an in vitro model of NAFLD, TRPV2 regulated lipid accumulation in HepG2 cells, and TRPV2 activation inhibited the expression of the cellular senescence markers p21 and p16, all of which were mediated by AMPK phosphorylation. Finally, we found that administration of probenecid, a TRPV2 agonist, impaired HFD-induced hepatic steatosis and suppressed HFD-induced elevation in p21 and p16. Collectively, our findings imply that hepatic TRPV2 protects against the accumulation of lipids by modulating p21 signalling. (AU)


Asunto(s)
Hígado Graso , Enfermedad del Hígado Graso no Alcohólico , Dieta Alta en Grasa
3.
Diabetologia ; 67(5): 850-863, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38413438

RESUMEN

AIMS/HYPOTHESIS: Type 2 diabetes mellitus is known to contribute to the development of heart failure with preserved ejection fraction (HFpEF). However, identifying HFpEF in individuals with type 2 diabetes early on is often challenging due to a limited array of biomarkers. This study aims to investigate specific biomarkers associated with the progression of HFpEF in individuals with type 2 diabetes, for the purpose of enabling early detection and more effective management strategies. METHODS: Blood samples were collected from individuals with type 2 diabetes, both with and without HFpEF, for proteomic analysis. Plasma integrin α1 (ITGA1) levels were measured and compared between the two groups. Participants were further categorised based on ITGA1 levels and underwent detailed transthoracic echocardiography at baseline and during a median follow-up period of 30 months. Multivariable linear and Cox regression analyses were conducted separately to assess the associations between plasma ITGA1 levels and changes in echocardiography indicators and re-hospitalisation risk. Additionally, proteomic data for the individuals' left ventricles, from ProteomeXchange database, were analysed to uncover mechanisms underlying the change in ITGA1 levels in HFpEF. RESULTS: Individuals with type 2 diabetes and HFpEF showed significantly higher plasma ITGA1 levels than the individuals with type 2 diabetes without HFpEF. These elevated ITGA1 levels were associated with left ventricular remodelling and impaired diastolic function. Furthermore, during a median follow-up of 30 months, multivariable analysis revealed that elevated ITGA1 levels independently correlated with deterioration of both diastolic and systolic cardiac functions. Additionally, higher baseline plasma ITGA1 levels independently predicted re-hospitalisation risk (HR 2.331 [95% CI 1.387, 3.917], p=0.001). Proteomic analysis of left ventricular myocardial tissue provided insights into the impact of increased ITGA1 levels on cardiac fibrosis-related pathways and the contribution made by these changes to the development and progression of HFpEF. CONCLUSIONS/INTERPRETATION: ITGA1 serves as a biomarker for monitoring cardiac structural and functional damage, can be used to accurately diagnose the presence of HFpEF, and can be used to predict potential deterioration in cardiac structure and function as well as re-hospitalisation for individuals with type 2 diabetes. Its measurement holds promise for facilitating risk stratification and early intervention to mitigate the adverse cardiovascular effects associated with diabetes. DATA AVAILABILITY: The proteomic data of left ventricular myocardial tissue from individuals with type 2 diabetes, encompassing both those with and without HFpEF, is available from the ProteomeXchange database at http://proteomecentral.proteomexchange.org .


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/complicaciones , Función Ventricular Izquierda , Volumen Sistólico , Integrina alfa1 , Diabetes Mellitus Tipo 2/complicaciones , Proteómica , Biomarcadores
4.
J. physiol. biochem ; 80(1): 113-126, Feb. 2024. ilus, graf
Artículo en Inglés | IBECS | ID: ibc-229944

RESUMEN

The global prevalence and incidence of non-alcoholic fatty liver disease (NAFLD) are exhibiting an increasing trend. NAFLD is characterized by a significant accumulation of lipids, though its underlying mechanism is still unknown. Here we report that high-fat diet (HFD) feeding induced hepatic steatosis in mice, which was accompanied by a reduction in the expression and function of hepatic TRPV2. Moreover, conditional knockout of TRPV2 in hepatocytes exacerbated HFD-induced hepatic steatosis. In an in vitro model of NAFLD, TRPV2 regulated lipid accumulation in HepG2 cells, and TRPV2 activation inhibited the expression of the cellular senescence markers p21 and p16, all of which were mediated by AMPK phosphorylation. Finally, we found that administration of probenecid, a TRPV2 agonist, impaired HFD-induced hepatic steatosis and suppressed HFD-induced elevation in p21 and p16. Collectively, our findings imply that hepatic TRPV2 protects against the accumulation of lipids by modulating p21 signalling. (AU)


Asunto(s)
Hígado Graso , Enfermedad del Hígado Graso no Alcohólico , Dieta Alta en Grasa
5.
J Physiol Biochem ; 80(1): 113-126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37882938

RESUMEN

The global prevalence and incidence of non-alcoholic fatty liver disease (NAFLD) are exhibiting an increasing trend. NAFLD is characterized by a significant accumulation of lipids, though its underlying mechanism is still unknown. Here we report that high-fat diet (HFD) feeding induced hepatic steatosis in mice, which was accompanied by a reduction in the expression and function of hepatic TRPV2. Moreover, conditional knockout of TRPV2 in hepatocytes exacerbated HFD-induced hepatic steatosis. In an in vitro model of NAFLD, TRPV2 regulated lipid accumulation in HepG2 cells, and TRPV2 activation inhibited the expression of the cellular senescence markers p21 and p16, all of which were mediated by AMPK phosphorylation. Finally, we found that administration of probenecid, a TRPV2 agonist, impaired HFD-induced hepatic steatosis and suppressed HFD-induced elevation in p21 and p16. Collectively, our findings imply that hepatic TRPV2 protects against the accumulation of lipids by modulating p21 signalling.


Asunto(s)
Canales de Calcio , Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Canales Catiónicos TRPV , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Regulación hacia Abajo , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo
6.
Int J Gen Med ; 15: 6009-6019, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35818579

RESUMEN

Purpose: Colorectal cancer (CRC) is among the most common cancers worldwide and an important cause of cancer-related death. Inherited genetic variation plays a vital role in the occurrence and development of CRC. The aim of this study was to evaluate the association of single nucleotide polymorphisms (SNPs) in MMP2 with CRC risk. Patients and Methods: Three candidates, MMP2 SNPs, rs1053605, rs243849, and rs14070, were selected and genotyped using the Agena MassARRAY RS1000 system, and their association with risk of CRC was evaluated in 663 CRC cases and 663 healthy controls by calculating odds ratio (OR) with 95% confidence interval (95% CI) values. Results: The minor allele of rs243849 (T) was significantly less frequent in cases than controls (p = 0.021), and this SNP was associated with a decreased risk of CRC under co-dominant (p = 0.033), dominant (p = 0.021), and log-additive (p = 0.017) models, after adjusting for confounding factors. After stratification, rs243849 was found to be protective against CRC in patients who were non-smoking, consumed alcohol, and were ≥60 years old (p < 0.05). Conversely, rs1053605 was associated with disease occurrence in patients with CRC who consumed alcohol and were <60 years old (p < 0.05). Furthermore, rs1053605 genotype was associated with an increased risk of colon cancer (p < 0.05), while that of rs243849 was associated with a decreased risk of rectal cancer (p < 0.05). The rs1053605-rs243849 CT haplotype exhibited a protective role in CRC risk, following adjustment for confounders (p = 0.014). The rs14070 SNP was not associated with CRC risk. Finally, the false discovery rate (FDR) method was used to validate the study results. Conclusion: Overall, the MMP2 gene polymorphisms, rs243849 and rs1053605, may be useful for predicting CRC progression.

7.
J Cardiovasc Pharmacol ; 79(4): 530-538, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34983906

RESUMEN

ABSTRACT: MicroRNAs (miRNAs) are noncoding RNAs that play an important role in the mechanisms of diabetic cardiomyopathy (DCM); however, whether human recombinant relaxin-3 (H3 relaxin) inhibits myocardial injury in DCM rats and the underlying mechanisms involving miRNAs remain unknown. miRNA expression profiles were detected using miRNA microarray and bioinformatics analyses of myocardial tissues from control, DCM, and H3 relaxin-administered DCM groups, and the regulatory mechanisms of the miRNAs were investigated. A total of 5 miRNAs were downregulated in the myocardial tissues of DCM rats and upregulated in H3 relaxin-treated DCM rats, and 1 miRNA (miRNA let-7d-3p) was increased in the myocardial tissue of DCM rats and decreased in H3 relaxin-treated DCM rats as revealed by miRNA microarray and validated by real-time polymerase chain reaction. Important signaling pathways were found to be triggered by the differentially expressed miRNAs, including metabolism, cancer, Rap1, PI3K-Akt, and MAPK signaling pathways. The study revealed that H3 relaxin improved glucose uptake in DCM rats, potentially via the regulation of miRNA let-7d-3p.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , MicroARNs , Relaxina , Animales , Biología Computacional , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/prevención & control , Perfilación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas , Ratas , Relaxina/genética
8.
Diabetes Obes Metab ; 24(3): 391-401, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34704329

RESUMEN

AIM: To investigate how subchronic administration of a glucokinase activator (GKA) results in attenuation of the hypoglycaemic effect in the diabetic condition. MATERIALS AND METHODS: Six-week-old db/db mice were fed standard chow containing a GKA or the sodium-glucose cotransporter 2 inhibitor ipragliflozin for 1, 6, 14 or 28 days. We performed histological evaluation and gene expression analysis of the pancreatic islets and liver after each treatment and compared the results to those in untreated mice. RESULTS: The unsustained hypoglycaemic effect of GKAs was reproduced in db/db mice in conjunction with significant hepatic fat accumulation. The initial reactions to treatment with the GKA in the liver were upregulation of the gene expression of carbohydrate response element-binding protein beta (Chrebp-b) and downregulation of phosphoenolpyruvate carboxykinase (Pepck) on day 1. Subsequently, the initial changes in Chrebp-b and Pepck disappeared and increases in the expression of genes involved in lipogenesis, including acetyl-CoA carboxylase and fatty acid synthase, were observed. There were no significant changes in the pancreatic ß cells nor in hepatic insulin signalling. CONCLUSIONS: The GKA showed an unsustained hypoglycaemic effect and promoted hepatic fat accumulation in db/db mice. Dynamic changes in the expression of hepatic genes involved in lipogenesis and gluconeogenesis could affect the unsustained hypoglycaemic effect of the GKA despite no changes in pancreatic ß-cell function and mass.


Asunto(s)
Glucoquinasa , Hipoglucemiantes , Animales , Glucoquinasa/genética , Glucoquinasa/metabolismo , Gluconeogénesis , Humanos , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hígado/metabolismo , Ratones , Triglicéridos/metabolismo
9.
J Diabetes Investig ; 12(9): 1545-1554, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33638884

RESUMEN

AIMS/INTRODUCTION: We aimed to determine whether glucokinase is required for ß-cell mass expansion induced by high-starch diet (HSTD)-feeding, as has been shown in its high-fat diet-induced expansion. MATERIALS AND METHODS: Eight-week-old male wild-type (Gck+/+ ) or glucokinase haploinsufficient (Gck+/- ) mice were fed either a normal chow (NC) or an HSTD for 15 weeks. The bodyweight, glucose tolerance, insulin sensitivity, insulin secretion and ß-cell mass were assessed. RESULTS: Both HSTD-fed Gck+/+ and Gck+/- mice had significantly higher bodyweight than NC-fed mice. Insulin and oral glucose tolerance tests revealed that HSTD feeding did not affect insulin sensitivity nor glucose tolerance in either the Gck+/+ or Gck+/- mice. However, during the oral glucose tolerance test, the 15-min plasma insulin concentration after glucose loading was significantly higher in the HSTD group than that in the NC group for Gck+/+ , but not for Gck+/- mice. ß-Cell mass was significantly larger in HSTD-fed Gck+/+ mice than that in NC-fed Gck+/+ mice. In contrast, the ß-cell mass of the HSTD-fed Gck+/- mice was not different from that of the NC-fed Gck+/- mice. CONCLUSIONS: The results showed that HSTD feeding would increase pancreatic ß-cell mass and insulin secretion in Gck+/+ , but not Gck+/- mice. This observation implies that glucokinase in ß-cells would be required for the increase in ß-cell mass induced by HSTD feeding.


Asunto(s)
Dieta Alta en Grasa , Glucoquinasa/fisiología , Glucosa/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Células Secretoras de Insulina/citología , Almidón/administración & dosificación , Animales , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados
10.
Thromb Res ; 197: 36-43, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166900

RESUMEN

Patients with essential hypertension (EH) and hyperhomocysteinemia (HHCY) suffer from more increased thrombotic events than those in EH alone. However, the underlying mechanisms for this effect are not well understood. This study hypothesized that neutrophil extracellular trap (NET) releasing may be triggered by HHCY in patients in EH, thereby predisposing them to a more hypercoagulable state. Using a modified-capture enzyme-linked immunosorbent assay (ELISA) method, we observed that cell-free DNA (CF-DNA) and myeloperoxidase DNA (MPO-DNA) in patients With EH and HHCY were significantly higher. The NET formation was also positively correlated with homocysteine levels, neutrophil-lymphocyte ratio (NLR), and hypercoagulable markers (thrombin-antithrombin complex, D-dimers). Furthermore, neutrophils from patients in EH with HHCY were found to be predisposed to amplified NET release when compared to patients in EH without HHCY or CTR. Coagulation function assays showed that NETs in patients With EH and HHCY resulted in a significantly increased ability to generate thrombin and fibrin than in those in EH without HHCY or CTR. These procoagulant effects of NETs in patients With EH and HHCY were markedly inhibited (approximately 70%) by the cleavage of NETs with DNase I. Isolated NETs from patients With EH and HHCY neutrophils also exerted a strong cytotoxic effect on endothelial cells (ECs), converted them to apoptosis. This study revealed a previously unrecognized association between the hypercoagulable state and neutrophils in patients With EH and HHCY. Therefore, blocking NETs may represent a new therapeutic objective for preventing thrombosis in these patients.


Asunto(s)
Trampas Extracelulares , Hiperhomocisteinemia , Coagulación Sanguínea , Células Endoteliales , Hipertensión Esencial , Humanos , Hiperhomocisteinemia/complicaciones , Neutrófilos
11.
Cell Prolif ; 53(10): e12902, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32945585

RESUMEN

OBJECTIVES: Calcium oxalate (CaOx) crystals can activate inflammatory cytokines by triggering inflammasomes, which cause damage to the adhered epithelium, a dysfunctional microenvironment and even renal failure. However, a comprehensive and in-depth understanding of the mechanisms underlying the effects of these crystals on damage and cytokine function in renal tubular epithelial cells (TECs) remains limited and to be explored. MATERIALS AND METHODS: We detected the pyroptosis of TECs induced after exposure to CaOx crystals and demonstrated the significance of cytokine activation in the subsequent inflammatory processes through a proteomic study. We then conducted animal and cell experiments to verify relevant mechanisms through morphological, protein, histological and biochemical approaches. Human serum samples were further tested to help explain the pathophysiological mechanism of H3 relaxin. RESULTS: We verified that crystal-induced extracellular adenosine triphosphate (ATP) upregulation via the membrane purinergic 2X7 receptor (P2X7 R) promotes ROS generation and thereby activates NLRP3 inflammasome-mediated interleukin-1ß/18 maturation and gasdermin D cleavage. Human recombinant relaxin-3 (H3 relaxin) can act on the transmembrane receptor RXFP1 to produce cAMP and subsequently improves crystal-derived damage via ATP consumption. Additionally, endogenous relaxin-3 was found to be elevated in patients with renal calculus and can thus serve as a biomarker. CONCLUSIONS: Our results provide previously unidentified mechanistic insights into CaOx crystal-induced inflammatory pyroptotic damage and H3 relaxin-mediated anti-inflammatory protection and thus suggest a series of potential therapeutic targets and methods for but not limited to nephrocalcinosis.


Asunto(s)
Antiinflamatorios/farmacología , Oxalato de Calcio/farmacología , Piroptosis/efectos de los fármacos , Relaxina/farmacología , Adenosina Trifosfato/metabolismo , Animales , Oxalato de Calcio/química , Línea Celular , AMP Cíclico/metabolismo , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Relaxina/sangre
12.
Can J Cardiol ; 36(6): 893-905, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32224080

RESUMEN

BACKGROUND: The infiltration of neutrophils aggravates inflammatory response in acute myocardial infarction (AMI), and the role of calcium-sensing receptor (CaSR) in neutrophil-associated inflammation is largely unknown. The aim of this study was to evaluate the regulatory effects of CaSR on nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome in neutrophils and to explore its role in AMI-related ventricular remodelling. METHODS: The expression of CaSR, NLRP3 inflammasome, and interleukin 1ß (IL-1ß) in peripheral blood and infiltrating neutrophils in patients and rats with AMI was detected by western blotting and immunofluorescence. Cardiomyocyte apoptosis was detected by western blotting and transmission electron microscopy. The degree of fibrosis was evaluated by Masson staining and western blotting. RESULTS: We found upregulation of CaSR, NLRP3 inflammasome, Caspase-1, and IL-1ß in peripheral neutrophils from patients with AMI compared with matched healthy controls, peaking on day 1 and decreasing gradually till 7 days. Peripheral and infiltrating neutrophils from rats with AMI showed the same trend. Calindol enhanced NLRP3 inflammasome activation and IL-1ß release in neutrophils from healthy volunteers, which was blocked by inhibitors of the PLC-IP3 pathway and ER-Ca2+ release. Calhex-231 decreased NLRP3 inflammasome activation and IL-1ß release in neutrophils from patients with AMI. The calindol-stimulated neutrophils from healthy rats promoted cardiomyocyte apoptosis and fibrosis of cardiac fibroblasts from healthy rats, which were inhibited by calhex-231. CONCLUSION: The results suggest that CaSR activates NLRP3 inflammasome in neutrophils, contributing to ventricular remodelling after AMI. CaSR inhibition may be a potential therapeutic target for heart failure in AMI.


Asunto(s)
Benzamidas/farmacología , Ciclohexilaminas/farmacología , Interleucina-1beta/inmunología , Infarto del Miocardio , Miocardio/patología , Miocitos Cardíacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Sensibles al Calcio , Remodelación Ventricular/efectos de los fármacos , Animales , Apoptosis/inmunología , Fibrosis/prevención & control , Humanos , Indoles/farmacología , Inflamasomas/metabolismo , Mediadores de Inflamación/metabolismo , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Naftalenos/farmacología , Neutrófilos/inmunología , Sustancias Protectoras , Ratas , Receptores Sensibles al Calcio/antagonistas & inhibidores , Receptores Sensibles al Calcio/inmunología
13.
Front Pharmacol ; 11: 603689, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584279

RESUMEN

Introduction: P2X7R excitation-interrelated NLRP3 inflammasome activation induced by high glucose contributes to the pathogenesis of diabetic retinopathy (DR). Relaxin-3 is a bioactive peptide with a structure similar to insulin, which has been reported to be effective in diabetic cardiomyopathy models in vivo and in vitro. However, it is not known whether relaxin-3 has a beneficial impact on DR, and the underlying mechanisms of the effect are also remain unknown. Methods and Results: The retinas of male streptozotocin (STZ)-induced diabetic Sprague-Dawley (SD) rats were characterized. Human retinal microvascular endothelial cells (HRMECs) were used to evaluate the anti-inflammatory, antiapoptotic, antipyroptotic and anti-migration effects of H3 relaxin by transmission electron microscopy, wound-healing assay, transwell assay, flow cytometry, cytokine assays and western-blot analysis. After H3 relaxin treatment, changes of the ultrastructure and expression of NLRP3 inflammasome related proteins in the retinas of rats were compared with those in the diabetic group. In vitro, H3 relaxin played a beneficial role that decreased cell inflammation, apoptosis, pyroptosis and migration stimulated by advanced glycation end products (AGEs). Moreover, inhibition of P2X7R and NLRP3 inflammasome activation decreased NLRP3 inflammasome-mediated injury that similar to the effects of H3 relaxin. H3 relaxin suppressed the stimulation of apoptosis, pyroptosis and migration of HRMECs in response to AGEs mediated by P2X7R activation of the NLRP3 inflammasome. Conclusion: Our findings provide new insights into the mechanisms of the inhibitory effect of H3 relaxin on AGE-induced retinal injury, including migration, apoptosis and pyroptosis, mediated by P2X7R-dependent activation of the NLRP3 inflammasome in HRMECs.

14.
Ann Transl Med ; 7(20): 561, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31807542

RESUMEN

BACKGROUND: Vascular remodeling, that contributes to cardiovascular diseases such as hypertension develops by anomalous proliferation and migration of vascular smooth muscle cells (VSMCs). Cortistatin (CST), a newly discovered biological peptide, has been acknowledged for its protective effects against cardiovascular diseases. Whether CST has an inhibitory regulation role in angiotensin II (Ang II)-induced proliferation and migration of VSMCs and what molecular mechanisms may participate in the CST inhibition process are still unknown. METHODS: VSMCs were divided into control group, Ang II (10-7 M) group, Ang II + PD98059 (5×10-5 M) group, Ang II + SB203580 (10-5 M) group, Ang II + SP600125 (10-5 M) group, Ang II + XMD17-109 (10-6 M) group, Ang II + CST (10-8 M) group and Ang II + CST (10-7 M) group. Cell proliferation was detected by western blotting and cell counting kit-8 (CCK8) analysis. Migration of VSMCs was measured by Transwell assay. RESULTS: Compared with control group, Ang II upregulated the expression levels of proliferating cell nuclear antigen (PCNA) and osteopontin (OPN) and downregulated that of α-smooth muscle actin (α-SMA), increased the proliferation rate as shown by CCK8 and VSMC migration as shown by Transwell assay in cultured VSMCs of the Ang II group. Meanwhile, in Ang II-cultured VSMCs, we found activation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAP kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), and ERK5 pathways by western blotting at different time points. However, the proliferation and migration stimulated by Ang II were partly reversed by drug inhibitors of the four pathways, namely, PD98059, SB203580, SP600125 and XMD17-109. When Ang II-stimulated VSMCs were cultured with CST pretreatment, we found that proliferation and migration were greatly suppressed as well as that the ERK1/2, p38 MAPK, JNK and ERK5 pathways were deactivated by CST. CONCLUSIONS: The accumulated data suggest that CST may play a protective role in Ang II-promoted proliferation and migration of VSMCs via inhibiting the mitogen-activated protein kinase (MAPK) family pathways, providing a new orientation of CST in protecting against cardiovascular diseases.

15.
Biochem Biophys Res Commun ; 512(4): 799-805, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30928096

RESUMEN

The physiological function of endothelial cells plays an important role in maintaining normal cardiovascular function. Endothelial dysfunction induced by AngII (angiotensin II) is the pathological mechanism of occurrence and development of cardiovascular diseases. Human recombinant relaxin-2 (H2 relaxin), which has protective effect on cardiovascular functions, ameliorates damage to endothelial cells induced by angiotensin II (AngII) treatment. However, the exact mechanisms remain unclear. In this study, we researched the mechanisms of H2 relaxin inhibiting AngII-induced endothelial dysfunction from the protective effect of H2 relaxin on endothelial function though inhibiting excessive mitochondrial fission. Here, we found that H2 relaxin increased eNOS, SOD1 expression, inhibited excessive mitochondrial fission and decreased ROS level in HUVECs treated with AngII. However, overexpression of fission protein 1 (Fis1) prevented H2 relaxin from protecting against AngII-induced low eNOS, SOD1 expression, excessive mitochondrial fission and increased ROS level in HUVECs. Our study indicated that excessive mitochondrial fission could be a target for H2 relaxin to treat endothelial dysfunction in angiocardiopathy.


Asunto(s)
Angiotensina II/metabolismo , Endotelio Vascular/efectos de los fármacos , Dinámicas Mitocondriales/fisiología , Relaxina/farmacología , Angiotensina II/toxicidad , Cardiotónicos/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Dinaminas/metabolismo , Endotelio Vascular/fisiopatología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
16.
Cell Physiol Biochem ; 43(4): 1311-1324, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28992627

RESUMEN

BACKGROUND/AIMS: Apoptosis, fibrosis and NLRP3 inflammasome activation are involved in the development of diabetic cardiomyopathy (DCM). Human recombinant relaxin-3 (H3 relaxin) is a novel bioactive peptide that inhibits cardiac injury; however, whether H3 relaxin prevents cardiac injury in rats with DCM and the underlying mechanisms are unknown. METHODS: To investigate the effect of H3 relaxin on DCM, we performed a study using H3 relaxin treatment in male Sprague-Dawley (SD) rats with streptozotocin (STZ)-induced diabetes (DM). We measured apoptosis, fibrosis and NLRP3 inflammasome markers in the rat hearts four and eight weeks after the rats were injected with STZ (65 mg/kg) by western blot analysis. Subsequently, 2 or 6 weeks after the STZ treatment, the rats were treated with H3 relaxin [2 µg/kg/d (A group) or 0.2 µg/kg/d (B group)] for 2 weeks. Cardiac function was evaluated by echocardiography to determine the extent of myocardial injury in the DM rats. The protein levels of apoptosis, fibrosis and NLRP3 inflammasome markers were used to assess myocardial injury. In addition, we determined the plasma levels of IL-1ß and IL-18 using a Milliplex MAP Rat Cytokine/Chemokine Magnetic Bead Panel kit. RESULTS: The protein expression of cleaved caspase-8, caspase-9 and caspase-3 as well as fibrosis markers increased at 4 and 8 weeks in the STZ-induced diabetic hearts compared with the levels in the control group. Furthermore, the NLRP3 inflammasome was substantially activated in STZ-induced diabetic hearts, leading to increased IL-1ß and IL-18 levels. Compared with the DM group, the A group exhibited substantially better cardiac function. The protein levels of apoptosis markers were attenuated by H3 relaxin, indicating that H3 relaxin inhibited myocardial apoptosis in the hearts of diabetic rats. The protein expression of fibrosis markers was inhibited by H3 relaxin. Additionally, the protein expression and activation of the NLRP3 inflammasome were also effectively attenuated by H3 relaxin. CONCLUSIONS: This study is the first to demonstrate that H3 relaxin plays an anti-apoptotic, anti-fibrotic and anti-inflammatory role in DCM.


Asunto(s)
Antiinflamatorios/uso terapéutico , Cardiotónicos/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/patología , Miocardio/patología , Relaxina/análogos & derivados , Animales , Apoptosis/efectos de los fármacos , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/inmunología , Fibrosis , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/inmunología , Inflamación/patología , Masculino , Miocardio/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/análisis , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Ratas Sprague-Dawley , Proteínas Recombinantes/uso terapéutico , Relaxina/uso terapéutico
17.
Cell Tissue Res ; 370(2): 297-304, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28776188

RESUMEN

High glucose induces apoptosis of cardiomyocytes and fibrosis of cardiac fibroblasts, contributing to diabetic cardiomyopathy. In this work, we explore the production of relaxin alterations and the significance of their receptor system components in the hearts of experimental diabetic cardiomyopathy rats. We measured rat relaxin-1 (equivalent to human relaxin-2), relaxin-3, RXFP1 and RXFP3 mRNA expression in the hearts of experimental diabetic cardiomyopathy rats. Neonatal rat ventricular myocytes (NRVMs) and cardiac fibroblasts were treated with 5.5 mmol/l normal glucose (NG) and 33 mmol/l high glucose (HG) for 0, 6, 12, 24, 48 and 72 h. Rat relaxin-1, relaxin-3, RXFP1 and RXFP3 mRNA expression were determined by real-time PCR. In the present study, we offer the first evidence that Relaxin-1 mRNA significantly increased and Relaxin-3 mRNA expression decreased at 4 and 8 weeks after STZ in the hearts of diabetic rats. In addition, significant down regulation of the mRNA expression of RXFP1 and RXFP3 was observed at 4 w after STZ; however, the mRNA expression levels of RXFP1 and RXFP3 were increased at 8 weeks after STZ. Apoptotic NRVMs induced by high glucose generate a decreased level of relaxin-1 and RXFP1. In HG-administered cardiac fibroblasts, Relaxin-1 mRNA was significantly increased and relaxin-3 mRNA was significantly decreased. Additionally, the mRNA expression of RXFP1 was decreased, and the mRNA expression of RXFP3 was increased. This results showed that an important role of relaxin-2, relaxin-3 and their receptors system in the regulation of diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Cardiomiopatías Diabéticas/genética , Proteínas del Tejido Nervioso/genética , Precursores de Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Relaxina/genética , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/patología , Regulación hacia Abajo , Fibrosis , Masculino , Miocardio/metabolismo , Miocardio/patología , ARN Mensajero/análisis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...