Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Biosci ; 23(11): e2300190, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37483061

RESUMEN

Hollow polymer microcapsules as drug carriers have the advantages of drug protection, storage, and controlled release. Microcapsules combined with tissue engineering scaffolds such as electrospun microfibers can enhance long-term local drug retention. However, the combination methods of microcapsules and fibers still need to be further explored. Here, different technical approaches to functionalize electrospun polycaprolactone (PCL) microfibers with silk fibroin (SF) microcapsules through encapsulation and surface immobilization are developed, including direct blending and emulsion electrospinning for encapsulation, as well as covalent and cleavable disulfide-linkage for surface immobilization. The results of "blending" approach show that silk microcapsules with different sizes could be uniformly encapsulated inside electrospun fibers without aggregation. To further reduce the use of organic solvents, the microcapsules in the aqueous phase can be uniformly distributed in the PCL organic phase and successfully electrospun into fibers using surfactant span-80. For surface immobilization, silk microcapsules are efficiently covalent binding to the surface of electrospun PCL fibers via click chemistry and exhibited noncytotoxic. Based on this method, with the incorporation of a disulfide bond, the linkages between microcapsule and fiber could be cleaved under reducing conditions. These microcapsule-electrospun fiber combination methods provide sufficient options for different drug delivery requirements.


Asunto(s)
Fibroínas , Seda , Seda/química , Cápsulas , Andamios del Tejido/química , Fibroínas/química , Disulfuros
2.
Biomaterials ; 271: 120768, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33812321

RESUMEN

The foreign-body reaction (FBR) caused by the implantation of synthetic polymer scaffolds seriously affects tissue-biomaterial integration and tissue repair. To address this issue, we developed a cell membrane-biomimetic coating formed by "click"-mediated liposome immobilization and fusion on the surface of electrospun fibers to mitigate the FBR. Utilization of electrospun polystyrene microfibrous scaffold as a model matrix, we deposited azide-incorporated silk fibroin on the surface of the fibers by the layer-by-layer assembly, finally, covalently modified with clickable liposomes via copper-free SPAAC click reaction. Compared with physical adsorption, liposomes click covalently binding can quickly fuse to form lipid film and maintain fluidity, which also improved liposome stability in vitro and in vivo. Molecular dynamics simulation proved that "click" improves the binding rate and strength of liposome to silk substrate. Importantly, histological observation and in vivo fluorescent probes imaging showed that liposome-functionalized electrospun fibers had negligible characteristics of the FBR and were accompanied by many infiltrated host cells and new blood vessels. We believe that the promotion of macrophage polarization toward a pro-regenerative phenotype plays an important role in vascularization. This bioinspired strategy paves the way for utilizing cell membrane biomimetic coating to resist the FBR and promote tissue-scaffold integration.


Asunto(s)
Fibroínas , Liposomas , Biomimética , Membrana Celular , Reacción a Cuerpo Extraño , Humanos , Andamios del Tejido
3.
Biomater Sci ; 8(14): 4026-4038, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32573617

RESUMEN

Naturally derived extracellular matrix scaffolds can effectively promote tissue repair and regeneration due to their remarkable bioactivity. However, their rapid degradation leads to the decrease of mechanical retention and the failure of physical support in vivo which limit their applications. In this paper, we modified a classic extracellular matrix scaffold - small intestinal submucosa (SIS) - by a silk fibroin (SF) layer-by-layer (LbL) assembly to replace the existing chemical crosslinking methods for improving its mechanical and structural stability. Experimental results showed that the SF LbL surface functionalized SIS scaffold had tunable mechanical properties and degradation rate by adjusting the number of layers of the SF deposited on the surface. For biological responses, in vitro NIH3T3 fibroblast culture studies demonstrated that SF surface modification did not affect the excellent biocompatibility of the SIS. In vivo subcutaneous implantation results showed that the SF modification could effectively extend the residence time of the SIS in the body, and elicit a more moderate inflammatory response compared to the traditional glutaraldehyde chemical crosslinking. Furthermore, we found that SF modification could maintain the ability of bioactive components of the SIS to regulate the transformation of M1 into M2 in macrophages in vivo. This SF LbL modification strategy offers a green process for the development of high-performance extracellular matrix-based scaffolds with tunable biodegradability.


Asunto(s)
Fibroínas , Seda , Animales , Matriz Extracelular , Ratones , Células 3T3 NIH , Ingeniería de Tejidos , Andamios del Tejido
4.
iScience ; 23(6): 101155, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32450519

RESUMEN

Graphene-based substrates are emerging as a promising functional platform for biomedical applications. Although dispersible graphene sheets have been demonstrated to be biodegradable, their assembled macroscopic architectures are biopersistent because of strong π-π interactions. In this study, we developed a nacre-inspired graphene-silk nanocomposite film by vacuum filtration with a subsequent green chemical reduction procedure. The "brick-and-mortar" architecture not only ensures the mechanical and electrical properties of the film but also endows it with disintegrable and bioresorbable properties following rat subcutaneous implantation. Furthermore, covalent cross-linking leads to the formation of graphene with decreased interlayer spacing, which effectively prolongs the residence time in vivo. We found that enzymatic treatment created microcracks on the film surface and that the foreign-body reaction was involved in the deformation, delamination, disintegration, and phagocytosis processes of the nanocomposite films. This bioinspired strategy paves the way for the development of high-performance graphene-based macroscopic biomaterials with tunable bioresorbability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...