Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Biochem Biophys Res Commun ; 708: 149770, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38518722

RESUMEN

BACKGROUND: High-altitude de-acclimatization (HADA) significantly impacts physiological functions when individuals acclimatize to high altitudes return to lower altitudes. This study investigates HADA's effects on renal function and structure in rats, focusing on oxidative and endoplasmic reticulum stress as potential mechanisms of renal injury. OBJECTIVE: To elucidate the pathophysiological mechanisms of renal damage in HADA and evaluate the efficacy of antioxidants Vitamin C (Vit C) and tauroursodeoxycholic acid (TUDCA) in mitigating these effects. METHODS: 88 male Sprague-Dawley rats were randomly divided into a control group, a high-altitude (HA) group, a high-altitude de-acclimatization (HADA) group, and a treatment group. The control group was housed in a sea level environment (500 m), while the HA, HADA, and treatment groups were placed in a simulated high-altitude chamber (5000 m) for 90 days. After this period, the HA group completed the modeling phase; the HADA group was further subdivided into four subgroups, each continuing to be housed in a sea level environment for 3, 7, 14, and 30 days, respectively. The treatment group was split into the Vit C group, the TUDCA group, and two placebo groups, receiving medication for 3 consecutive days, once daily upon return to the sea level. The Vit C group received 100 mg/kg Vit C solution via intravenous injection, the TUDCA group received 250 mg/kg TUDCA solution via intraperitoneal injection, and the placebo groups received an equivalent volume of saline similarly. Serum, urine, and kidney tissues were collected immediately after the modeling phase. Renal function and oxidative stress levels were assessed using biochemical and ELISA methods. Renal histopathology was observed with H&E, Masson's trichrome, PAS, and PASM staining. Transmission electron microscopy was used to examine the ultrastructure of glomeruli and filtration barrier. TUNEL staining assessed cortical apoptosis in the kidneys. Metabolomics was employed for differential metabolite screening and pathway enrichment analysis. RESULTS: Compared to the control and HA groups, the HADA 3-day group (HADA-3D) exhibited elevated renal function indicators, significant pathological damage, observable ultrastructural alterations including endoplasmic reticulum expansion and apoptosis. TUNEL-positive cells significantly increased, indicating heightened oxidative stress levels. Various differential metabolites were enriched in pathways related to oxidative and endoplasmic reticulum stress. Early intervention with Vit C and TUDCA markedly alleviated renal injury in HADA rats, significantly reducing the number of apoptotic cells, mitigating endoplasmic reticulum stress, and substantially lowering oxidative stress levels. CONCLUSION: This study elucidates the pivotal roles of oxidative and endoplasmic reticulum stress in the early-stage renal injury in rats undergoing HADA. Early intervention with the Vit C and TUDCA significantly mitigates renal damage caused by HADA. These findings provide insights into the pathophysiological mechanisms of HADA and suggest potential therapeutic strategies for its future management.


Asunto(s)
Altitud , Riñón , Ácido Tauroquenodesoxicólico , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Riñón/patología , Apoptosis , Estrés Oxidativo , Estrés del Retículo Endoplásmico
2.
Cell Stem Cell ; 31(2): 212-226.e7, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38232727

RESUMEN

The effects of exercise on fibro-adipogenic progenitors (FAPs) are unclear, and the direct molecular link is still unknown. In this study, we reveal that exercise reduces the frequency of FAPs and attenuates collagen deposition and adipose formation in injured or disused muscles through Musclin. Mechanistically, Musclin inhibits FAP proliferation and promotes apoptosis in FAPs by upregulating FILIP1L. Chromatin immunoprecipitation (ChIP)-qPCR confirms that FoxO3a is the transcription factor of FILIP1L. In addition, the Musclin/FILIP1L pathway facilitates the phagocytosis of apoptotic FAPs by macrophages through downregulating the expression of CD47. Genetic ablation of FILIP1L in FAPs abolishes the effects of exercise or Musclin on FAPs and the benefits on the reduction of fibrosis and fatty infiltration. Overall, exercise forms a microenvironment of myokines in muscle and prevents the abnormal accumulation of FAPs in a Musclin/FILIP1L-dependent manner. The administration of exogenous Musclin exerts a therapeutic effect, demonstrating a potential therapeutic approach for muscle atrophy or acute muscle injury.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Musculares , Músculos , Factores de Transcripción , Humanos , Adipogénesis , Diferenciación Celular , Fibrosis , Homeostasis , Músculo Esquelético/metabolismo , Músculos/metabolismo , Factores de Transcripción/metabolismo , Animales , Ratones , Proteínas Musculares/metabolismo
3.
Acta Diabetol ; 61(1): 79-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688646

RESUMEN

AIM: Gestational diabetes mellitus (GDM) affects a significant number of women worldwide and has been associated with lifelong health consequences for their offspring, including increased susceptibility to obesity, insulin resistance, and type II diabetes. Recent studies have suggested that aberrant expression of the long non-coding RNA Meg3 in the liver may contribute to impaired glucose metabolism in individuals. In this study, we aimed to investigate whether intrauterine exposure to hyperglycemia affects glucose intolerance in puberty by mediating the overexpression of LncMeg3 in the liver. METHODS: To test our hypothesis, we established an animal model of intrauterine hyperglycemia to mimic GDM. The progeny was observed for phenotypic changes, and intraperitoneal glucose tolerance tests, insulin tolerance tests, and pyruvate tolerance tests were conducted to assess glucose and insulin tolerance. We also measured LncMeg3 expression in the liver using real-time quantitative PCR and examined differential methylation areas (DMRs) in the Meg3 gene using pyrophosphoric sequencing. To investigate the role of LncMeg3 in glucose tolerance, we conducted Meg3 intervention by vein tail and analyzed the changes in the phenotype and transcriptome of the progeny using bioinformatics analysis. RESULTS: We found that intrauterine exposure to hyperglycemia led to impaired glucose and insulin tolerance in the progeny, with a tendency toward increased fasting blood glucose in fat offspring at 16 weeks (P = 0.0004). LncMeg3 expression was significantly upregulated (P = 0.0061), DNMT3B expression downregulated (P = 0.0226), and DNMT3A (P = 0.0026), TET2 (P = 0.0180) expression upregulated in the liver. Pyrophosphoric sequencing showed hypomethylation in Meg3-DMRs (P = 0.0005). Meg3 intervention by vein tail led to a decrease in the percentage of obese and emaciated offspring (emaciation: 44% vs. 23%; obesity: 25% vs. 15%) and attenuated glucose intolerance. Bioinformatics analysis revealed significant differences in the transcriptome of the progeny, particularly in circadian rhythm and PPAR signaling pathways. CONCLUSION: In conclusion, our study suggests that hypomethylation of Meg3-DMRs increases the expression of the imprinted gene Meg3 in the liver of males, which is associated with impaired glucose tolerance in GDM-F1. MEG3 interference may attenuate glucose intolerance, which may be related to transcriptional changes. Our findings provide new insights into the mechanisms underlying the long-term effects of intrauterine hyperglycemia on progeny health and highlight the potential of Meg3 as an intervention target for glucose intolerance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Intolerancia a la Glucosa , Hiperglucemia , Insulinas , ARN Largo no Codificante , Animales , Femenino , Humanos , Masculino , Embarazo , Glucemia/metabolismo , Diabetes Gestacional/genética , Glucosa , Intolerancia a la Glucosa/genética , Hiperglucemia/genética , Hiperglucemia/metabolismo , Obesidad/complicaciones , Obesidad/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
J Transl Med ; 21(1): 921, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115075

RESUMEN

BACKGROUND: Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most prevalent metabolic syndromes worldwide. However, no approved pharmacological treatments are available for MAFLD. Chenpi, one kind of dried peel of citrus fruits, has traditionally been utilized as a medicinal herb for liver diseases. Didymin is a newly identified oral bioactive dietary flavonoid glycoside derived from Chenpi. In this study, we investigated the therapeutic potential of Didymin as an anti-MAFLD drug and elucidated its underlying mechanisms. METHODS: High-fat diet (HFD)-induced MAFLD mice and alpha mouse liver 12 (AML12) cells were utilized to evaluate the effects and mechanisms of Didymin in the treatment of MAFLD. Liver weight, serum biochemical parameters, and liver morphology were examined to demonstrate the therapeutic efficacy of Didymin in MAFLD treatment. RNA-seq analysis was performed to identify potential pathways that could be affected by Didymin. The impact of Didymin on Sirt1 was corroborated through western blot, molecular docking analysis, microscale thermophoresis (MST), and deacetylase activity assay. Then, a Sirt1 inhibitor (EX-527) was utilized to confirm that Didymin alleviates MAFLD via Sirt1. Western blot and additional assays were used to investigate the underlying mechanisms. RESULTS: Our results suggested that Didymin may possess therapeutic potential against MAFLD in vitro and in vivo. By promoting Sirt1 expression as well as directly binding to and activating Sirt1, Didymin triggers downstream pathways that enhance mitochondrial biogenesis and function while reducing apoptosis and enhancing lipophagy. CONCLUSIONS: These suggest that Didymin could be a promising medication for MAFLD treatment. Furthermore, its therapeutic effects are mediated by Sirt1.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Sirtuina 1 , Animales , Ratones , Sirtuina 1/metabolismo , Biogénesis de Organelos , Simulación del Acoplamiento Molecular , Flavonoides/farmacología , Flavonoides/uso terapéutico , Glicósidos/farmacología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo
5.
Neural Regen Res ; 18(8): 1657-1665, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36751776

RESUMEN

There is growing evidence that long-term central nervous system (CNS) inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progression. In acute CNS injury, brain microglia are among the first cells to respond and play a critical role in neural repair and regeneration. However, microglial activation can also impede CNS repair and amplify tissue damage, and phenotypic transformation may be responsible for this dual role. Mesenchymal stem cell (MSC)-derived exosomes (Exos) are promising therapeutic agents for the treatment of acute CNS injuries due to their immunomodulatory and regenerative properties. MSC-Exos are nanoscale membrane vesicles that are actively released by cells and are used clinically as circulating biomarkers for disease diagnosis and prognosis. MSC-Exos can be neuroprotective in several acute CNS models, including for stroke and traumatic brain injury, showing great clinical potential. This review summarized the classification of acute CNS injury disorders and discussed the prominent role of microglial activation in acute CNS inflammation and the specific role of MSC-Exos in regulating pro-inflammatory microglia in neuroinflammatory repair following acute CNS injury. Finally, this review explored the potential mechanisms and factors associated with MSC-Exos in modulating the phenotypic balance of microglia, focusing on the interplay between CNS inflammation, the brain, and injury aspects, with an emphasis on potential strategies and therapeutic interventions for improving functional recovery from early CNS inflammation caused by acute CNS injury.

6.
Curr Stem Cell Res Ther ; 18(3): 401-409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35546753

RESUMEN

BACKGROUND: Heatstroke (HS) is a serious disease caused by central nervous system (CNS) injuries, such as delirium, convulsion, and coma. Currently, mesenchymal stem cells (MSCs) have demonstrated novel neuroprotective effects; therefore, this research explores the neuroprotective effects and mechanisms of MSCs against HS injury. METHODS: HS rat models were induced in a 40°C and 65% humidity environment until the rectal temperature reached 42°C. The verified HS injury model rats were divided into the HS and MSCs-treated groups. Each rat in the treated group was infused with 1x106 MSCs suspended in 0.3 ml physiological saline via the tail vein. The HS- or MSCs-treated rats were further divided into early-stage (3d) and late-stage (28d). HS rat models were induced by a high-temperature and high-humidity environment at a specific time, the mortality was analyzed, and an automatic biochemical analyzer measured levels of liver and kidney function indicators in the blood. The neurons' morphologic changes were observed through Nissl staining, and neurological deficit scores were performed. Moreover, the levels of inflammatory factors in brain tissue were measured using a multi-cytokine detection platform, and the expression of BDNF, phosphorylated TrkB and P38 were detected by the Western Bolt. RESULTS: MSCs injection significantly reduced mortality and alleviated liver and kidney function. Moreover, the neurological deficit and neuronic edema of the hippocampus caused by HS at 3d and 28d were significantly ameliorated by MSCs administration. Specifically, the injection of MSCs inhibited high levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α (TNF-α), and IL-17A caused by HS but elevated the levels of IL-10 and IL-13 in the early period (3d); while in the later period (28d), MSCs significantly increased the levels of IL-10 and IL-13 continuously and inhibited the high level of IL-17A. Furthermore, MSCs injection increased the expressions of BDNF and phosphorylated TrkB (BDNF receptor), meanwhile inhibiting the expression of phosphorylated P38 (inflammatory factor) in the brains of HS rats in the early period (3d) but had no significant influence on the later period (28d). CONCLUSION: These results suggested that MSCs injection may provide therapeutic effects for HS in rats by improving liver and kidney function and reducing CNS damage. Moreover, MSCs injection inhibited the brain inflammatory response of HS rats, and the BDNF-TrkB and P38/MAPK signal pathways may be involved, providing a potential mechanism for HS therapy by MSCs administration.


Asunto(s)
Golpe de Calor , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Fármacos Neuroprotectores , Ratas , Animales , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Interleucina-13/metabolismo , Encéfalo , Golpe de Calor/terapia , Golpe de Calor/metabolismo , Golpe de Calor/patología , Células Madre Mesenquimatosas/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos
7.
PLoS One ; 17(12): e0279385, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36548293

RESUMEN

Preterm delivery is greatly associated with perinatal mortality and morbidity, while there is no objective way to identify high-risk newborns currently. This study aimed at discovering the risk factor for Apgar score less than 7 at 1 minute of preterm neonates born with vaginal delivery. A retrospective study was performed in single pregnancy women with a vaginal delivery before 37 weeks of gestation. All the preterm infants were categorized into three types: very preterm birth (28 to 32 weeks), moderate preterm birth (32 to 34 weeks) and late preterm birth (34 to 37 weeks). Risk factors were identified through logistic regression analysis in every category of newborns mentioned above. And the receiver operating characteristic analysis was used in continuous variables to determine the best threshold of the outcome. On the basis of the selected factors, the predicting models are created and its prognosticating ability is compared by the area under the curve. A nomogram was established for the proved best model. A total of 981 cases were investigated, of whom 55 were found with 1 min Apgar scores less than 7. The nomogram was set for the predicting model with larger area under the receiver operating characteristic curve, of which is 0.742(95% confidence interval = 0.670-0.805) in very preterm birth, with the variables of first and second labor stage(> = 1.6 hours), birthweight and MgSO4(magnesium sulfate), and is 0.807(95% confidence interval = 0.776-0.837) in late preterm birth, with the variables of second labor stage(> = 1.23 hours), birthweight, a history of previous cesarean delivery, fetal distress and placental abruption. The combination of first and second labor stage, newborn weight and MgSO4 use can predict 74.2% of 1 minute Apgar score < 7 in very preterm neonates. And 80.7% high-risk infants can be identified when second labor stage, newborn weight, VBAC (vaginal birth after cesarean) and the occur of placental abruption and fetal distress were combined in the predicting model for late preterm birth. These predicting models would bring out great assistance towards obstetricians and reduce unnecessary adverse fetal outcomes.


Asunto(s)
Desprendimiento Prematuro de la Placenta , Trabajo de Parto , Nacimiento Prematuro , Lactante , Recién Nacido , Embarazo , Femenino , Humanos , Estudios Retrospectivos , Peso al Nacer , Sufrimiento Fetal , Puntaje de Apgar , Recien Nacido Prematuro , Placenta
8.
Environ Entomol ; 51(4): 700-709, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35666204

RESUMEN

The cigarette beetle, Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae), is a destructive stored product pest worldwide. Adult cigarette beetles are known to rely on host volatiles and pheromones to locate suitable habitats for oviposition and mating, respectively. However, little is known about the chemosensory mechanisms of these pests. Soluble chemoreception proteins are believed to initiate olfactory signal transduction in insects, which play important roles in host searching and mating behaviors. In this study, we sequenced the antennal transcriptome of L. serricorne and identified 14 odorant-binding proteins (OBPs), 5 chemosensory proteins (CSPs), and 2 Niemann-Pick C2 proteins (NPC2). Quantitative realtime PCR (qPCR) results revealed that several genes (LserOBP2, 3, 6, and 14) were predominantly expressed in females, which might be involved in specific functions in this gender. The five LserOBPs (LserOBP1, 4, 8, 10, and 12) that were highly expressed in the male antennae might encode proteins involved in specific functions in males. These findings will contribute to a better understanding of the olfactory system in this stored product pest and will assist in the development of efficient and environmentally friendly strategies for controlling L. serricorne.


Asunto(s)
Escarabajos , Receptores Odorantes , Animales , Antenas de Artrópodos/metabolismo , Escarabajos/genética , Escarabajos/metabolismo , Femenino , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Transcriptoma
9.
Front Endocrinol (Lausanne) ; 13: 844707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432202

RESUMEN

Objective: The offspring of women with gestational diabetes mellitus (GDM) have a high predisposition to developing type 2 diabetes during childhood and adulthood. The aim of the study was to evaluate how GDM exposure in the second half of pregnancy contributes to hepatic glucose intolerance through a mouse model. Methods: By creating a GDM mouse model, we tested glucose and insulin tolerance of offspring by intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), and pyruvate tolerance test (PTT). In addition, we checked the expression of genes IGF2/H19, FoxO1, and DNMTs in the mouse liver by RT-qPCR. Pyrosequencing was used to detect the methylation status on IGF2/H19 differentially methylated regions (DMRs). In vitro insulin stimulation experiments were performed to evaluate the effect of different insulin concentrations on HepG2 cells. Moreover, we detect the interaction between FoxO1 and DNMT3A by chromatin immunoprecipitation-quantitative PCR (Chip-qPCR) and knock-down experiments on HepG2 cells. Results: We found that the first generation of GDM offspring (GDM-F1) exhibited impaired glucose tolerance (IGT) and insulin resistance, with males being disproportionately affected. In addition, the expression of imprinted genes IGF2 and H19 was downregulated in the livers of male mice via hypermethylation of IGF2-DMR0 and IGF2-DMR1. Furthermore, increased expression of transcriptional factor FoxO1 was confirmed to regulate DNMT3A expression, which contributed to abnormal methylation of IGF2/H19 DMRs. Notably, different insulin treatments on HepG2 demonstrated those genetic alterations, suggesting that they might be induced by intrauterine hyperinsulinemia. Conclusion: Our results demonstrated that the intrauterine hyperinsulinemia environment has increased hepatic FoxO1 levels and subsequently increased expression of DNMT3A and epigenetic alterations on IGF2/H19 DMRs. These findings provide potential molecular mechanisms responsible for glucose intolerance and insulin resistance in the first male generation of GDM mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Intolerancia a la Glucosa , Resistencia a la Insulina , Adulto , Animales , Diabetes Gestacional/genética , Epigénesis Genética , Femenino , Proteína Forkhead Box O1/genética , Intolerancia a la Glucosa/genética , Humanos , Insulina , Resistencia a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/genética , Hígado , Masculino , Ratones , Embarazo
10.
J Diabetes Res ; 2021: 4632745, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869778

RESUMEN

Gestational diabetes mellitus (GDM) is a common pregnancy complication which is normally diagnosed in the second trimester of gestation. With an increasing incidence, GDM poses a significant threat to maternal and offspring health. Therefore, we need a deeper understanding of GDM pathophysiology and novel investigation on the diagnosis and treatment for GDM. MicroRNAs (miRNAs), a class of endogenic small noncoding RNAs with a length of approximately 19-24 nucleotides, have been reported to exert their function in gene expression by binding to proteins or being enclosed in membranous vesicles, such as exosomes. Studies have investigated the roles of miRNAs in the pathophysiological mechanism of GDM and their potential as noninvasive biological candidates for the management of GDM, including diagnosis and treatment. This review is aimed at summarizing the pathophysiological significance of miRNAs in GDM development and their potential function in GDM clinical diagnosis and therapeutic approach. In this review, we summarized an integrated expressional profile and the pathophysiological significance of placental exosomes and associated miRNAs, as well as other plasma miRNAs such as exo-AT. Furthermore, we also discussed the practical application of exosomes in GDM postpartum outcomes and the potential function of several miRNAs as therapeutic target in the GDM pathological pathway, thus providing a novel clinical insight of these biological signatures into GDM therapeutic approach.


Asunto(s)
Diabetes Gestacional/tratamiento farmacológico , MicroARNs/farmacología , Adulto , Diabetes Gestacional/genética , Exosomas/metabolismo , Femenino , Expresión Génica/genética , Expresión Génica/fisiología , Humanos , MicroARNs/metabolismo , MicroARNs/uso terapéutico , Embarazo
11.
J Org Chem ; 86(12): 8457-8464, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34100610

RESUMEN

A metal-free Cs2CO3-promoted hydrothiolation of alkynes with aryl thioureas for stereoselective synthesis of (Z)-vinyl sulfides has been reported. Vinyl thioethers were obtained without a metal catalyst in good yields via anti-Markovnikov and cis addition. The protocol features a broad substrate scope of the starting materials, high atom economy, good yields, and exclusive stereoselectivity, showing potential synthetic value for the synthesis of a diversity of (Z)-vinyl thioethers.


Asunto(s)
Alquinos , Tiourea , Catálisis , Sulfuros
13.
Mil Med Res ; 7(1): 40, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854781

RESUMEN

BACKGROUND: Heat stroke (HS) is a serious, life-threatening disease. However, there is no scoring system for HS so far. This research is to establish a scoring system that can quantitatively assess the severity of exertional heat stroke (EHS). METHODS: Data were collected from a total of 170 exertional heat stroke (EHS) patients between 2005 and 2016 from 52 hospitals in China. Univariate statistical methods and comparison of the area under the receiver operating characteristic (ROC) curve (AUC) were used to screen exertional heat stroke score (EHSS) parameters, including but not limited body temperature (T), Glasgow Coma Scale (GCS) and others. By comparing the sizes of the AUCs of the APACHE II, SOFA and EHSS assessments, the effectiveness of EHSS in evaluating the prognosis of EHS patients was verified. RESULTS: Through screening with a series of methods, as described above, the present study determined 12 parameters - body temperature (T), GCS, pH, lactate (Lac), platelet count (PLT), prothrombin time (PT), fibrinogen (Fib), troponin I (TnI), aspartate aminotransferase (AST), total bilirubin (TBIL), creatinine (Cr) and acute gastrointestinal injury (AGI) classification - as EHSS parameters. It is a 0-47 point system designed to reflect increasing severity of heat stroke. Low (EHSS< 20) and high scores (EHSS> 35) showed 100% survival and 100% mortality, respectively. We found that AUCEHSS > AUCSOFA > AUCAPACHE II. CONCLUSION: A total of 12 parameters - T, GCS, pH, Lac, PLT, PT, Fib, TnI, AST, TBIL, Cr and gastrointestinal AGI classification - are the EHSS parameters with the best effectiveness in evaluating the prognosis of EHS patients. As EHSS score increases, the mortality rate of EHS patients gradually increases.


Asunto(s)
Golpe de Calor/clasificación , Esfuerzo Físico/fisiología , Índice de Severidad de la Enfermedad , APACHE , Adulto , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
14.
Eur J Gastroenterol Hepatol ; 32(9): 1200-1206, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31851092

RESUMEN

OBJECTIVE: Radiofrequency ablation (RFA) is an effective and minimally invasive treatment for managing hepatic hemangiomas. Systemic inflammatory response syndrome (SIRS) often occurs with hemoglobinuria, and its underlying pathophysiological mechanism is unknown. Heme can trigger inflammation by inducing the generation of reactive oxygen species (ROS) and the production of inflammatory mediators. We therefore investigated whether circulating heme is involved in SIRS following RFA of hepatic hemangiomas. METHODS: We enrolled 65 patients with hepatic hemangioma who underwent RFA. Serum concentrations of free heme, ROS, and tumor necrosis factor α (TNF-α) were measured after RFA. Univariate analysis and a multivariate binary logistic regression model were used to evaluate the contribution of 17 risk factors for SIRS after RFA. RESULTS: Fifty-nine (59/65, 90.8%) patients developed hemoglobinuria, among which 25 (25/59, 42.4%) experienced SIRS shortly after RFA. In the SIRS group, the serum concentrations of heme, ROS, and TNF-α were immediately elevated after RFA compared with baseline and slowly regained their normal levels 3 days after RFA. Moreover, the concentrations of circulating heme significantly correlated with those of ROS (r = 0.805, P < 0.001) and TNF-α (r = 0.797, P < 0.001). Multivariate analysis showed that the volume of hemangioma [odds ratio (OR) = 1.293, P = 0.031], time of ablation (OR = 1.194, P = 0.029) as well as the concentrations of heme (OR = 1.430, P = 0.017), ROS (OR = 1.251, P = 0.031), and TNF-α (OR = 1.309, P = 0.032) were significantly associated with SIRS. CONCLUSION: Circulating heme was associated with the induction of ROS and the production of TNF-α, which may contribute to the induction of SIRS following RFA of hepatic hemangiomas.


Asunto(s)
Ablación por Catéter , Hemangioma , Neoplasias Hepáticas , Ablación por Radiofrecuencia , Ablación por Catéter/efectos adversos , Hemangioma/cirugía , Hemo , Humanos , Neoplasias Hepáticas/cirugía , Síndrome de Respuesta Inflamatoria Sistémica/etiología
15.
Front Genet ; 10: 1201, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824579

RESUMEN

Agenesis of the corpus callosum (ACC) is a birth defect in which the corpus callosum is either partially or completely missing. With recent advances in prenatal ultrasound, detection of ACC in obstetric practices is becoming more common. Etiologies of ACC include chromosome errors, genetic factors, prenatal infections, and other factors related to the prenatal environment. In an effort to elucidate more about the genetic influence in the pathogenesis of ACC, we identified, through whole-exome sequencing (WES), two gene mutations in two families with complete agenesis of the corpus callosum. These two mutations are located on chromosome X: one is a hemizygous missense mutation c.3746T>C (p. L1249P) in the gene mediator complex subunit 12 (MED12); the other one is a heterozygous missense mutation c.128+5G>C in gene ephrin B1 (EFNB1). Historically, early diagnosis of complete ACC during pregnancy has been difficult; however, WES has provided us with a creative avenue of diagnosis, combining identification of genetic mutations with prenatal imaging.

16.
Open Med (Wars) ; 14: 398-402, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31157306

RESUMEN

In recent years, radiofrequency (RF) ablation has been increasingly used for treating hepatic hemangiomas attributing to its unique advantages, such as minimal invasiveness, definite efficacy, high safety, fast recovery, and wide applicability. However, complications related to RF ablation had been frequently reported, especially while being used for treating huge hemangioma (≥10 cm). Cautious measures had been taken to prevent the incidence of ablation-induced complications, but still unexpected complications occurred. Herein we reported a case of severe myocardial dysfunction along with systemic inflammatory response syndrome occurring immediately post RF ablation of a 10.7 cm hemangioma. This serious complication was effectively managed by supportive care with the full recovery in a short period of time.

17.
Infect Dis Poverty ; 8(1): 104, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31888731

RESUMEN

BACKGROUND: Rapid diagnostic tests (RDT) can effectively manage malaria cases and reduce excess costs brought by misdiagnosis. However, few studies have evaluated the economic value of this technology. The purpose of this study is to systematically review the economic value of RDT in malaria diagnosis. MAIN TEXT: A detailed search strategy was developed to identify published economic evaluations that provide evidence regarding the cost-effectiveness of malaria RDT. Electronic databases including MEDLINE, EMBASE, Biosis Previews, Web of Science and Cochrane Library were searched from Jan 2007 to July 2018. Two researchers screened studies independently based on pre-specified inclusion and exclusion criteria. The Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist was applied to evaluate the quality of the studies. Then cost and effectiveness data were extracted and summarized in a narrative way. Fifteen economic evaluations of RDT compared to other diagnostic methods were identified. The overall quality of studies varied greatly but most of them were scored to be of high or moderate quality. Ten of the fifteen studies reported that RDT was likely to be a cost-effective approach compared to its comparisons, but the results could be influenced by the alternatives, study perspectives, malaria prevalence, and the types of RDT. CONCLUSIONS: Based on available evidence, RDT had the potential to be more cost-effective than either microscopy or presumptive diagnosis. Further research is also required to draw a more robust conclusion.


Asunto(s)
Análisis Costo-Beneficio , Pruebas Diagnósticas de Rutina/economía , Malaria/diagnóstico , Humanos
18.
J Hypertens ; 37(3): 581-589, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30234781

RESUMEN

BACKGROUND: Increasing epidemiological studies have confirmed the association between maternal preeclampsia and elevated blood pressure in their offspring. Though case-control or cohort studies have demonstrated long-term outcomes for the offspring of preeclampsia, it is still a question that how these changes were caused by genetic reasons or by preeclampsia itself. OBJECTIVE: In our study, we explored the potential epigenetic regulation of delta-like homolog 1-maternally expressed gene 3 (DLK1-MEG3) region in human umbilical vein endothelial cells (HUVECs), and its connection with endothelium-derived factors. STUDY DESIGN: We recruited 58 singletons born with spontaneous conception (control group) and 67 singletons whose mother with preeclampsia (preeclampsia group), and detected the infants' blood pressure and growth development index. To explore the potential mechanism, we did real-time PCR to test DLK1-MEG3 imprinted genes and endothelium-derived factors. ELISA confirmed the protein secretion changes between two groups. In addition to confirm epigenetic alteration in preeclampsia HUVEC, we performed pyro-sequencing to detect methylation status of two different methylation regions: intergenic differential methylation region (IG-DMR) and MEG3 DMR which control the expression of DLK1 and MEG3. Furthermore, Person correlation was used to make sure the association of methylation alteration of IG-DMR and endothelium-derived factors. RESULTS: In our study, we found that DBP was significantly lower in preeclampsia offspring who born over 34 weeks compared with normal offspring (53.59 ±â€Š1.38 vs. 59.9 ±â€Š1.40 mmHg, P < 0.01), which leads to higher pulse pressure difference. Quantitative real-time PCR showed that imprinted gene DLK1 level significantly increased and MEG3 level decreased in HUVEC of preeclampsia group compared with control group, accompanying with lower expression of endothelial nitric oxide synthase and vascular endothelial growth factor (VEGF), higher expression of endothelin-1 (ET1), which are close related with vascular endothelial function. Meanwhile, ELISA assay of ET1, nitrite, VEGF were consistent with real-time results. Furthermore, abnormal expression of DLK1-MEG3 expression was caused by hypermethylation status of IG-DMR, And methylation status of IG-DMR highly correlated with ET1 concentration and nitrate concentration, these might be one of the mechanisms for impaired endothelial function (coefficient = 0.5806, P = 0.0115; coefficient = -0.4883, P = 0.0398). CONCLUSION: Our results demonstrated that altered expression of imprinted genes DLK1 and MEG3 were caused by hypermethylation of IG-DMR in HUVEC of preeclampsia group, accompanied by lower secretion of nitrite, VEGF, and higher secretion of ET1. It might be one potential mechanism for higher risk of cardiovascular disease in preeclampsia offspring later in life.


Asunto(s)
Proteínas de Unión al Calcio , Metilación de ADN/genética , Proteínas de la Membrana , Preeclampsia , ARN Largo no Codificante , Venas Umbilicales/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Recién Nacido , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Venas Umbilicales/citología
19.
Exp Ther Med ; 16(6): 4609-4615, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30542411

RESUMEN

Systemic inflammatory response syndrome (SIRS) is an important process associated with the pathogenesis of multiple organ failure resulting from heat stroke (HS). Alterations in the levels of circulating cytokines during the progression of SIRS have been well established. However, only a small number of studies have demonstrated the responses of lymphocytes during HS, and no studies have investigated immune-regulatory cells, such as regulatory T cells (Tregs). Tregs have been revealed to be important in numerous inflammation-associated diseases, and have exhibited promising therapeutic effects in both experimental and clinical trials. In the present study, the splenic Treg response in a classic HS mouse model was investigated, and the results demonstrated that total numbers of splenic Tregs were significantly decreased at 0, 24 and 72 h time intervals post-heat stress. Furthermore, the immunosuppressive capacity of splenic Tregs on cluster of differentiation (CD)4+T cell expansion was revealed to be suppressed following heat stress. In addition, HS was demonstrated to downregulate the expression levels of surface inhibitory molecules (CD39, CD73 and cytotoxic T-lymphocyte associated protein 4), as well as anti-inflammatory cytokines [interleukin (IL)-10, transforming growth factor-ß and IL-35], in Tregs. It was hypothesized that the aforementioned Treg responses may contribute to SIRS during HS. To the best of our knowledge, the present study is the first study to investigate the response of Tregs to HS, and the results demonstrated that there were significant alterations regarding to the total number, and function, of splenic Tregs, as well as the expression levels of inhibitory surface molecules and secretory cytokines. These results may highlight a novel mechanism underlying the pathogenesis of HS, as well as identify a potential therapeutic target for SIRS in patients suffering from HS.

20.
PLoS One ; 13(2): e0192610, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29451882

RESUMEN

Cornus officinalis is one of the most widely used medicinal plants in China and other East Asian countries to cure diseases such as liver, kidney, cardiovascular diseases and frequent urination for thousands of years. It is a Level 3 protected species, and is one of the 42 national key protected wild species of animals and plants in China. However, the genetics and molecular biology of C. officinalis are poorly understood, which has hindered research on the molecular mechanism of its metabolism and utilization. Hence, enriching its genomic data and information is very important. In recent years, the fast-growing technology of next generation sequencing has provided an effective path to gain genomic information from nonmodel species. This study is the first to explore the leaf and fruit tissue transcriptome of C. officinalis using the Illumina HiSeq 4000 platform. A total of 57,954,134 and 60,971,652 clean reads from leaf and fruit were acquired, respectively (GenBank number SRP115440). The pooled reads from all two libraries were assembled into 56,392 unigenes with an average length 856 bp. Among these, 41,146 unigenes matched with sequences in the NCBI nonredundant protein database. The Gene Ontology database assigned 24,336 unigenes with biological process (83.26%), cellular components (53.58%), and molecular function (83.93%). In addition, 10,808 unigenes were assigned a KOG functional classification by the KOG database. Searching against the KEGG pathway database indicated that 18,435 unigenes were mapped to 371 KEGG pathways. Moreover, the edgeR database identified 4,585 significant differentially expressed genes (DEGs), of which 1,392 were up-regulated and 3,193 were down-regulated in fruit tissue compared with leaf tissue. Finally, we explored 581 transcription factors with 50 transcription factor gene families. Most DEGs and transcription factors were related to terpene biosynthesis and secondary metabolic regulation. This study not only represented the first de novo transcriptomic analysis of C. officinalis but also provided fundamental information on its genes and biosynthetic pathway. These findings will help us explore the molecular metabolism mechanism of terpene biosynthesis in C. officinalis.


Asunto(s)
Cornus/genética , Hojas de la Planta/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...