Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cancer Gene Ther ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418842

RESUMEN

This study utilized Next-Generation Sequencing (NGS) to explore genetic determinants of survival duration in Glioblastoma Multiforme (GBM) patients. We categorized 30 primary GBM patients into two groups based on their survival periods: extended survival (over two years, N = 17) and abbreviated survival (under two years, N = 13). For identifying pathogenic or likely pathogenic variants, we leveraged the ClinVar database. The cohort, aged 23 to 66 (median: 53), included 17 patients in Group A (survival >2 years, 10 males, 7 females), and 13 patients in Group B (survival <2 years, 8 males, 5 females), with a 60% to 40% male-to-female ratio. Identified mutations included CHEK2 (c.1477 G > A, p.E493K), IDH1 (c.395 G > A, p.R132H), and TP53 mutations. Non-coding regions exhibited variants in the TERT promoter (c.-146C > T, c.-124C > T) and TP53 RNA splicing site (c.376-2 A > C, c.376-2 A > G). While Group A had more mutations, statistical significance wasn't reached, likely due to sample size. Notably, TP53, and ATR displayed a trend toward significance. Surprisingly, TP53 mutations were more prevalent in Group A, contradicting Western findings on poorer GBM prognosis. In Taiwanese GBM patients, bevacizumab usage is linked to improved survival rates, affirming its safety and effectiveness. EGFR mutations are infrequent, suggesting potential distinctions in carcinogenic pathways. Further research on EGFR mutations and amplifications is essential for refining therapeutic approaches. TP53 mutations are associated with enhanced survival, but their functional implications necessitate detailed exploration. This study pioneers genetic analysis in Taiwanese GBM patients using NGS, advancing our understanding of their genetic landscape.

2.
Am J Cancer Res ; 13(7): 2998-3012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559985

RESUMEN

Aberrant chondroitin sulfate (CS) accumulation in glioblastoma (GBM) tissue has been documented, but the role of excessive CS in GBM progression and whether it can be a druggable target are largely unknown. The aim of this study is to clarify the biological functions of CHST11 in GBM cells, and evaluate therapeutic effects of blocking CHST11-derived chondroitin 4-sulfate (C4S). We investigated the expression of CHST11 in glioma tissue by immunohistochemistry, and analyzed CHST11 associated genes using public RNA sequencing datasets. The effects of CHST11 on aggressive cell behaviors have been studied in vitro and in vivo. We demonstrated that CHST11 is frequently overexpressed in GBM tissue, promoting GBM cell mobility and modulating C4S on GBM cells. We further discovered that CSPG4 is positively correlated with CHST11, and CSPG4 involved in CHST11-mediated cell invasiveness. In addition, GBM patients with high expression of CHST11 and CSPG4 have a significantly shorter survival time. We examined the effects of treating C4S-specific binding peptide (C4Sp) as a therapeutic agent in vitro and in vivo. C4Sp treatment attenuated GBM cell invasiveness and, notably, improved survival rate of orthotopic glioma cell transplant mice. Our results propose a possible mechanism of CHST11 in regulating GBM malignancy and highlight a novel strategy for targeting aberrant chondroitin sulfate in GBM cells.

3.
J Chin Med Assoc ; 86(10): 930-934, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528523

RESUMEN

BACKGROUND: Intraventricular hemorrhage (IVH) is a type of ventricular bleeding that results in significant morbidity and mortality. Multiple studies have investigated the use of urokinase in IVH treatment. The use of urokinase may lead to higher rates of hematoma resolution and lower mortality rates. However, further studies are required to determine efficacy of urokinase administration. This study examined the association between urokinase use, IVH volume reduction, and clinical outcomes. METHODS: In total, 94 adult patients with hypertensive intracerebral hemorrhage with ventricular extension or primary IVH were enrolled between 2015 and 2021. Participants were categorized into two groups: "EVD combined with fibrinolysis" and "EVD only." The primary objective was to assess the reduction of IVH severity. Additionally, the study evaluated the functional outcomes and shunt dependency rate as secondary outcomes. Non-contrast computed tomography scans were obtained to measure the severity of IVH using the mGRAEB score. The main outcomes were the association among urokinase administration, reduced IVH severity, and functional outcomes. RESULTS: There were no significant differences in the reduction rate of mGRAEB scores within a 7-day period (-50.0 [-64.4 to -32.5] % vs -44.2 [-59.3 to -7.9] %; p = 0.489). In addition, investigation of the third and fourth ventricles showed similar findings between the two groups. Urokinase treatment was not associated with significant differences in the modified Rankin Scale (5.0 (4.0-5.0) vs. 4.5 (4.0-5.0), p = 0.674) or shunt dependency rate (33.3% vs 39.3%, p = 0.58). CONCLUSION: This study found that intraventricular urokinase use in patients with IVH was not associated with reduced IVH severity. In addition, urokinase use was not associated with better functional outcomes or minor shunt dependency rates.


Asunto(s)
Hemorragia Cerebral , Activador de Plasminógeno de Tipo Uroquinasa , Adulto , Humanos , Hemorragia Cerebral/tratamiento farmacológico , Ventrículos Cerebrales , Estudios Retrospectivos , Resultado del Tratamiento , Activador de Plasminógeno de Tipo Uroquinasa/uso terapéutico
4.
Cells ; 12(14)2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37508556

RESUMEN

Au decorated with type I collagen (Col) was used as a core material to cross-link with stromal cell-derived factor 1α (SDF1α) in order to investigate biological performance. The Au-based nanoparticles were subjected to physicochemical determination using scanning electron microscopy (SEM), dynamic light scattering (DLS) and ultraviolet-visible (UV-Vis) and Fourier-transform infrared spectroscopy (FTIR). Mesenchymal stem cells (MSCs) were used to evaluate the biocompatibility of this nanoparticle using the MTT assay and measuring reactive oxygen species (ROS) production. Also, the biological effects of the SDF-1α-conjugated nanoparticles (Au-Col-SDF1α) were assessed and the mechanisms were explored. Furthermore, we investigated the cell differentiation-inducing potential of these conjugated nanoparticles on MSCs toward endothelial cells, neurons, osteoblasts and adipocytes. We then ultimately explored the process of cell entry and transportation of the nanoparticles. Using a mouse animal model and retro-orbital sinus injection, we traced in vivo biodistribution to determine the biosafety of the Au-Col-SDF1α nanoparticles. In summary, our results indicate that Au-Col is a promising drug delivery system; it can be used to carry SDF1α to improve MSC therapeutic efficiency.


Asunto(s)
Células Madre Mesenquimatosas , Nanopartículas , Animales , Células Endoteliales , Distribución Tisular , Nanopartículas/química , Diferenciación Celular
5.
BMC Immunol ; 24(1): 14, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386444

RESUMEN

BACKGROUND: Dendritic Cell Cytokine-induced killer cell (DC-CIK) coculture treatment in cancer immunotherapy has been shown to be effective. However, the cost of DC- CIK therapy is prohibitive for many patients, and the lack of standard manufacturing processes and treatment strategies are major limitations. Our study used tumor lysate as a tumor-associated antigen source and DCs and CIK cells in coculture. We developed an efficient method to obtain autologous DCs- and CIK cells from peripheral blood. We used flow cytometry to assess DC activation and the cytometric bead array assay to quantify cytokines secreted by CIK cells. RESULTS: We evaluated the antitumor activity of DC- CIK coculture in vitro with the K562 cell line. We demonstrated that a manufacturing process employing frozen immature DCs can yield the lowest loss with the highest economic benefits. DC-CIK coculture can effectively upgrade CIK cells' immunological specificity to tumors in the presence of tumor-associated antigens. CONCLUSION: In vitro experiments revealed that when the DC- CIK cell ratio was 1: 20 in the coculture, CIK cells secreted the highest number of cytokines on the 14th day and the antitumor immune effect showed the highest potency. CIK cells' cytotoxicity to K562 cells was highest when the CIK: K562 cell ratio was 25: 1. We developed an efficient manufacturing process for DC- CIK coculture, while also establishing the optimal DC- CIK cell ratio for immunological activity and the best cytotoxic CIK: K562 cell ratio.


Asunto(s)
Células Asesinas Inducidas por Citocinas , Neoplasias , Humanos , Técnicas de Cocultivo , Inmunoterapia , Citocinas , Células Dendríticas
6.
Brain Sci ; 13(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190618

RESUMEN

BACKGROUND: Intracranial arteriovenous malformations (AVMs) are lesions containing complex vessels with a lack of buffering capillary architecture which might result in hemorrhagic cerebrovascular accidents (CVAs). Intraoperative navigation can improve resection rates and functional preservation in patients with lesions in eloquent areas, but current systems have limitations that can distract the operator. Augmented Reality (AR) surgical technology can reduce these distractions and provide real-time information regarding vascular morphology and location. METHODS: In this case report, an adult patient was admitted to the emergency department after a fall, and diagnostic imaging revealed a Spetzler-Martin grade I AVM in the right parietal region with evidence of rupture. The patient underwent a stereotactic microsurgical resection with assistance from augmented reality technology, which allowed for a hologram of the angioarchitecture to be projected onto the cortical surface, aiding in the recognition of the angiographic anatomy during surgery. RESULTS: The patient's postoperative recovery went smoothly. At 6-month follow-up, the patient had remained in stable condition, experiencing complete relief from his previous symptoms. The follow-up examination also revealed complete obliteration of the AVMs without any remaining pathological vascular structure. CONCLUSIONS: AR-assisted microsurgery makes both the dissection and resection steps safer and more delicate. As several innovations are occurring in AR technology today, it is likely that this novel technique will be increasingly adopted in both surgical applications and education. Although certain limitations exist, this technique may still become more efficient and precise as this novel technology its continues to develop further.

7.
Pharmaceutics ; 15(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37242627

RESUMEN

In the present study, the various concentrations of AuNP (1.25, 2.5, 5, 10 ppm) were prepared to investigate the biocompatibility, biological performances and cell uptake efficiency via Wharton's jelly mesenchymal stem cells and rat model. The pure AuNP, AuNP combined with Col (AuNP-Col) and FITC conjugated AuNP-Col (AuNP-Col-FITC) were characterized by Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and Dynamic Light Scattering (DLS) assays. For in vitro examinations, we explored whether the Wharton's jelly MSCs had better viability, higher CXCR4 expression, greater migration distance and lower apoptotic-related proteins expression with AuNP 1.25 and 2.5 ppm treatments. Furthermore, we considered whether the treatments of 1.25 and 2.5 ppm AuNP could induce the CXCR4 knocked down Wharton's jelly MSCs to express CXCR4 and reduce the expression level of apoptotic proteins. We also treated the Wharton's jelly MSCs with AuNP-Col to investigate the intracellular uptake mechanisms. The evidence demonstrated the cells uptake AuNP-Col through clathrin-mediated endocytosis and the vacuolar-type H+-ATPase pathway with good stability inside the cells to avoid lysosomal degradation as well as better uptake efficiency. Additionally, the results from in vivo examinations elucidated the 2.5 ppm of AuNP attenuated foreign body responses and had better retention efficacy with tissue integrity in animal model. In conclusion, the evidence demonstrates that AuNP shows promise as a biosafe nanodrug delivery system for development of regenerative medicine coupled with Wharton's jelly MSCs.

8.
Neurospine ; 20(1): 141-149, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37016862

RESUMEN

OBJECTIVE: Sacroiliac joint (SIJ) pain is a common cause of chronic low back pain. Full-endoscopic rhizotomy of lateral branches of dorsal rami innervating SIJ is a potential option for patients' refractory to medical treatment. The full-endoscopic rhizotomy is sometimes challenging under fluoroscopic guidance. This study is to evaluate the effectiveness of the navigation-assisted full-endoscopic rhizotomy for SIJ pain. METHODS: The study was a retrospective match-paired study that enrolled consecutive patients undergoing navigation-assisted full-endoscopic rhizotomy for SIJ pain. The patient demographics, clinical outcomes, and operative parameters of endoscopic rhizotomy were compared with conventional cooled radiofrequency ablation (RFA) treatment. RESULTS: The study enrolled 72 patients, including 36 patients in the endoscopic group. Thirty-six patients in the cooled RFA group were matched by age as the control. The follow-up time was at least 1 year. Patient characteristics were similar between the groups. The navigation-assisted endoscopic rhizotomy operation time was significantly longer than the cooled RFA. The visual analogue scale (VAS) for pain and Oswestry Disability Index (ODI) significantly decreased after each treatment. However, the between-group comparison revealed that the VAS and ODI of the patients after endoscopic rhizotomy were significantly lower than those after the cooled RFA group. There were no postoperative complications in the study. CONCLUSION: Navigation-assisted full-endoscopic rhizotomy is an alternative to SIJ pain treatment. Integrating intraoperative navigation can ensure accurate full-endoscopic rhizotomy to provide better durability of pain relief than the cooled RFA.

9.
In Vivo ; 37(3): 1384-1388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37103117

RESUMEN

BACKGROUND/AIM: Identifying pathogens with culture-negative pyogenic spondylitis is difficult. Shotgun metagenomic sequencing is an unbiased and culture-free approach in the diagnosis of infectious diseases. There are, however, a variety of contaminating factors that can confound the precision of metagenomic sequencing. CASE REPORT: In a 65-year-old man suffering from culture-negative L3-5 spondylitis, metagenomics was applied to facilitate the diagnosis. The patient underwent percutaneous endoscopic lumbar discectomy. We applied metagenomic sequencing with a robust contamination-free protocol to the bone biopsy. By comparing the abundance for each taxon between the replicates and negative controls, we reliably identified Cutibacterium modestum as having a statistically higher abundance in all replicates. The patient's antibiotic therapy was switched to penicillin and doxycycline based upon the resistome analysis; the patient fully recovered. CONCLUSION: This application of next-generation sequencing provides a new perspective in the clinical approach to spinal osteomyelitis and illustrates the potential of this technique in rapid etiological diagnosis.


Asunto(s)
Discectomía Percutánea , Desplazamiento del Disco Intervertebral , Espondilitis , Masculino , Humanos , Anciano , Vértebras Lumbares , Espondilitis/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
10.
Medicina (Kaunas) ; 59(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36837531

RESUMEN

The coexistence of glioblastoma multiforme (GBM) and arteriovenous malformation (AVM) is rarely reported in the literature. According to the present literature, these GBM or glioma-related vascular malformations may present simultaneously in distinct regions of the brain or occur in the same area but at different times. So far, these distinct hypervascular glioblastomas have been described but are not classified as a separate pathological entities. Considering their heterogeneity and complexity, all the above mentioned cases remain challenging in diagnosis and therapeutic modality. Likewise, there is a paucity of data surrounding the simultaneous presentation of GBM with intracranial aneurysms. In the literature, the independent concurrence of these three intracranial lesions has never been reported. In this article, we present a case who suffered from intermittent headaches and dizziness initially and further radiographic examination revealed an internal carotid artery (ICA) aneurysm that occurred in the patient with coexisting GBM and AVM. Surgical intervention for tumor and AVM removal was performed smoothly. This patient underwent endovascular coiling for the ICA aneurysm 4 months postoperatively. In addition, we also review the current literature relating to this rare combination of medical conditions.


Asunto(s)
Glioblastoma , Aneurisma Intracraneal , Malformaciones Arteriovenosas Intracraneales , Humanos , Malformaciones Arteriovenosas Intracraneales/complicaciones , Malformaciones Arteriovenosas Intracraneales/diagnóstico , Malformaciones Arteriovenosas Intracraneales/cirugía , Triploidía , Encéfalo
12.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36232555

RESUMEN

Neuropathic pain is well known to occur after damage to the somatosensory system. Aryl hydrocarbon receptor (AhR) has neuroprotective effects when the central nervous system is subjected to internal and external stimulations. However, the exact mechanism by which AhR regulates neuropathic pain is poorly understood. Nerve explant culture and the chronic constrictive nerve injury (CCI) model in wild or AhR-knockout mice were used in this study. In the nerve explant culture, the ovoid number increased in the AhR-/- condition and was decreased by omeprazole (AhR agonist) in a dose-dependent manner. Increased nerve degeneration and the associated inflammation response appeared in the AhR-/- condition, and these changes were attenuated by omeprazole. High expression of AhR in the injured nerve was noted after CCI. Deletion of AhR aggravated nerve damages and this was restored by omeprazole. Deletion of AhR increased NGF expression and reduced axon number in the paw skin, but this was attenuated by omeprazole. A highly expressed inflammation reaction over the dorsal spinal cord, somatosensory cortex, and hippocampus was noted in the AhR-deleted animals. Administration of omeprazole attenuated not only the inflammatory response, but also the amplitude of somatosensory evoked potential. Deletion of AhR further aggravated the neurobehavior compared with the wild type, but such behavior was attenuated by omeprazole. Chronic constrictive nerve injury augmented AhR expression of the injured nerve, and AhR deletion worsened the damage, while AhR agonist omeprazole counteracted such changes. AhR agonists could be potential candidates for neuropathic pain treatment.


Asunto(s)
Lesiones por Aplastamiento , Neuralgia , Fármacos Neuroprotectores , Traumatismos del Sistema Nervioso , Animales , Constricción , Constricción Patológica , Modelos Animales de Enfermedad , Hiperalgesia/metabolismo , Inflamación/genética , Ratones , Ratones Noqueados , Factor de Crecimiento Nervioso , Neuralgia/etiología , Neuralgia/genética , Omeprazol , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Nervio Ciático/metabolismo
13.
Life (Basel) ; 12(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36013354

RESUMEN

Objective: The leading treatment option for dural carotid−cavernous sinus fistula is an endovascular approach with immediate improvement. Alternatively, radiosurgery is a slow response for obliterating the fistula and poses a radiation risk to the optic apparatus and the associated cranial nerves and blood vessels. In this study, we retrieved cases from a prospective database to assess the ophthalmological outcomes and complications in treating dural carotid cavernous sinus fistula with gamma knife radiosurgery (GKRS). Material and Methods: We retrieved a total of 65 cases of carotid cavernous sinus fistula treated with GKRS with margin dose of 18−20 Gy from 2003 to 2018 and reviewed the ophthalmological records required for our assessment. Results: The mean target volume was 2 ± 1.43 cc. The onset of symptom alleviated after GKRS was 3.71 ± 7.68 months. There were two cases with residual chemosis, two with cataract, two with infarction, one with transient optic neuropathy, and four with residual cranial nerve palsy, but none with glaucoma or dry eyes. In MRA analysis, total obliteration of the fistula was noted in 64 cases with no detectable ICA stenosis nor cavernous sinus thrombosis. In the Cox regression analysis, post-GKRS residual cranial nerve palsy was highly correlated to targeted volume (p < 0.05) and age (p < 0.05). The occurrence of post-GKRS cataract was related to the initial symptom of chemosis (p < 0.05). Conclusion: GKRS for carotid cavernous sinus fistula offers a high obliteration rate and preserves the cavernous sinus vascular structure while conferring a low risk of treatment complications such as adverse radiation risk to the optic apparatus and adjacent cranial nerves.

14.
Cells ; 11(14)2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35883615

RESUMEN

n-butylidenephthalide (BP) has been verified as having the superior characteristic of cancer cell toxicity. Furthermore, gold (Au) nanoparticles are biocompatible materials, as well as effective carriers for delivering bio-active molecules for cancer therapeutics. In the present research, Au nanoparticles were first conjugated with polyethylene glycol (PEG), and then cross-linked with BP to obtain PEG-Au-BP nanodrugs. The physicochemical properties were characterized through ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) to confirm the combination of PEG, Au, and BP. In addition, both the size and structure of Au nanoparticles were observed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), where the size of Au corresponded to the results of DLS assay. Through in vitro assessments, non-transformed BAEC and DBTRG human glioma cells were treated with PEG-Au-BP drugs to investigate the tumor-cell selective cytotoxicity, cell uptake efficiency, and mechanism of endocytic routes. According to the results of MTT assay, PEG-Au-BP was able to significantly inhibit DBTRG brain cancer cell proliferation. Additionally, cell uptake efficiency and potential cellular transportation in both BAEC and DBTRG cell lines were observed to be significantly higher at 2 and 24 h. Moreover, the mechanisms of endocytosis, clathrin-mediated endocytosis, and cell autophagy were explored and determined to be favorable routes for BAEC and DBTRG cells to absorb PEG-Au-BP nanodrugs. Next, the cell progression and apoptosis of DBTRG cells after PEG-Au-BP treatment was investigated by flow cytometry. The results show that PEG-Au-BP could remarkably regulate the DBTRG cell cycle at the Sub-G1 phase, as well as induce more apoptotic cells. The expression of apoptotic-related proteins in DBTRG cells was determined through Western blotting assay. After treatment with PEG-Au-BP, the apoptotic cascade proteins p21, Bax, and Act-caspase-3 were all significantly expressed in DBTRG brain cancer cells. Through in vivo assessments, the tissue morphology and particle distribution in a mouse model were examined after a retro-orbital sinus injection containing PEG-Au-BP nanodrugs. The results demonstrate tissue integrity in the brain (forebrain, cerebellum, and midbrain), heart, liver, spleen, lung, and kidney, as they did not show significant destruction due to PEG-Au-BP treatment. Simultaneously, the extended retention period for PEG-Au-BP nanodrugs was discovered, particularly in brain tissue. The above findings identify PEG-Au-BP as a potential nanodrug for brain cancer therapies.


Asunto(s)
Neoplasias Encefálicas , Nanopartículas del Metal , Animales , Proteínas Reguladoras de la Apoptosis/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Oro/química , Oro/farmacología , Humanos , Nanopartículas del Metal/química , Ratones , Anhídridos Ftálicos , Polietilenglicoles/química
15.
Int J Surg Case Rep ; 97: 107369, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35901547

RESUMEN

INTRODUCTION AND IMPORTANCE: Several meningioma cases arising through Meckel's cave (MC) at the middle and posterior fossa have been reported. However, few relevant meningiomas have been observed with a dumbbell shape. PRESENTATION OF CASE: We report a rare case of a 36-year-old woman with a meningioma of MC with a typical dumbbell-shaped, schwannoma-like presentation on magnetic resonance imaging (MRI), resulting in a misleading differential diagnosis. CLINICAL DISCUSSION: In this case report, we discuss the characteristics of meningioma of MC observed on MRI and our surgical approach to this condition. CONCLUSION: This tumor was able to mimic a trigeminal schwannoma both clinically and radiographically. This case report has been reported in line with the SCARE 2020 criteria [1].

16.
Cells ; 11(12)2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35740991

RESUMEN

Chitosan (Chi) is a natural polymer that has been demonstrated to have potential as a promoter of neural regeneration. In this study, Chi was prepared with various amounts (25, 50, and 100 ppm) of gold (Au) nanoparticles for use in in vitro and in vivo assessments. Each as-prepared material was first characterized by UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and Dynamic Light Scattering (DLS). Through the in vitro experiments, Chi combined with 50 ppm of Au nanoparticles demonstrated better biocompatibility. The platelet activation, monocyte conversion, and intracellular ROS generation was remarkably decreased by Chi-Au 50 pm treatment. Furthermore, Chi-Au 50 ppm could facilitate colony formation and strengthen matrix metalloproteinase (MMP) activation in mesenchymal stem cells (MSCs). The lower expression of CD44 in Chi-Au 50 ppm treatment demonstrated that the nanocomposites could enhance the MSCs undergoing differentiation. Chi-Au 50 ppm was discovered to significantly induce the expression of GFAP, ß-Tubulin, and nestin protein in MSCs for neural differentiation, which was verified by real-time PCR analysis and immunostaining assays. Additionally, a rat model involving subcutaneous implantation was used to evaluate the superior anti-inflammatory and endothelialization abilities of a Chi-Au 50 ppm treatment. Capsule formation and collagen deposition were decreased. The CD86 expression (M1 macrophage polarization) and leukocyte filtration (CD45) were remarkably reduced as well. In summary, a Chi polymer combined with 50 ppm of Au nanoparticles was proven to enhance the neural differentiation of MSCs and showed potential as a biosafe nanomaterial for neural tissue engineering.


Asunto(s)
Quitosano , Células Madre Mesenquimatosas , Nanopartículas del Metal , Nanocompuestos , Animales , Quitosano/química , Quitosano/farmacología , Oro/química , Oro/farmacología , Nanopartículas del Metal/química , Nanocompuestos/química , Ratas
18.
J Chin Med Assoc ; 85(2): 198-203, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35175243

RESUMEN

BACKGROUND: Trigeminal neuralgia (TN) is a disease characterized by recurring, short-lived, electric shock-like pain experienced on one side of the face. Microvascular decompression (MVD) is one of the most effective surgical interventions for resolving TN caused by neurovascular compression. This study aimed to determine the predictive and prognostic factors of surgical outcomes. METHODS: This retrospective cohort study enrolled patients diagnosed with TN who underwent MVD at our hospital during 2013-2019. The demographic information, pain character, peri-operative Barrow Neurological Institute (BNI) scale, medication, operative finding were recorded. And the outcome was Outcomes were divided into drug-free and drug-dependent group. Predisposing factors for each outcome were analyzed by one-way analysis of variance, followed by a Mann-Whitney U test or Kruskal-Wallis test. RESULTS: A total of 104 consecutive patients received MVD to treat TN, and 88 patients were enrolled in this study. The overall postoperative drug-free outcome was 72.7%. A significant difference in drug-free outcomes was observed for patients with typical TN (80.8%) compared with patients with atypical TN (33.33%, p = 0001). When severe venous compression was encountered during MVD, the drug-free outcome fell to 50% (10/20, p = 0.009). The Mann-Whitney U test indicated typical TN as a positive predictive factor of a drug-free outcome, whereas severe venous compression was a negative predictive factor. The patients with preoperative BNI score of 4 had better improvement than others (p = 0.045). Age, onset duration, and arterial loop had no specific difference in this study. CONCLUSION: In our study, atypical TN and severe venous compression were associated with poor outcomes. Regrouping atypical TN into precise diagnosis represents an immediate priority according to our result. The preoperative BNI score could be used as an effective predictive tool for the outcome of MVD surgery.


Asunto(s)
Cirugía para Descompresión Microvascular , Evaluación de Resultado en la Atención de Salud , Neuralgia del Trigémino/fisiopatología , Neuralgia del Trigémino/cirugía , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
19.
Cells ; 10(12)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34943784

RESUMEN

Tissue repair engineering supported by nanoparticles and stem cells has been demonstrated as being an efficient strategy for promoting the healing potential during the regeneration of damaged tissues. In the current study, we prepared various nanomaterials including pure Pul, pure Col, Pul-Col, Pul-Au, Pul-Col-Au, and Col-Au to investigate their physicochemical properties, biocompatibility, biological functions, differentiation capacities, and anti-inflammatory abilities through in vitro and in vivo assessments. The physicochemical properties were characterized by SEM, DLS assay, contact angle measurements, UV-Vis spectra, FTIR spectra, SERS, and XPS analysis. The biocompatibility results demonstrated Pul-Col-Au enhanced cell viability, promoted anti-oxidative ability for MSCs and HSFs, and inhibited monocyte and platelet activation. Pul-Col-Au also induced the lowest cell apoptosis and facilitated the MMP activities. Moreover, we evaluated the efficacy of Pul-Col-Au in the enhancement of neuronal differentiation capacities for MSCs. Our animal models elucidated better biocompatibility, as well as the promotion of endothelialization after implanting Pul-Col-Au for a period of one month. The above evidence indicates the excellent biocompatibility, enhancement of neuronal differentiation, and anti-inflammatory capacities, suggesting that the combination of pullulan, collagen, and Au nanoparticles can be potential nanocomposites for neuronal repair, as well as skin tissue regeneration in any further clinical treatments.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Glucanos/farmacología , Células-Madre Neurales/efectos de los fármacos , Ingeniería de Tejidos , Células Cultivadas/efectos de los fármacos , Glucanos/química , Oro/química , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Nanopartículas del Metal/química , Nanocompuestos/química , Andamios del Tejido/química
20.
Cells ; 10(11)2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34831077

RESUMEN

A nanocomposite composed of polyethylene glycol (PEG) incorporated with various concentrations (~17.4, ~43.5, ~174 ppm) of gold nanoparticles (Au) was created to investigate its biocompatibility and biological performance in vitro and in vivo. First, surface topography and chemical composition was determined through UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), free radical scavenging ability, and water contact angle measurement. Additionally, the diameters of the PEG-Au nanocomposites were also evaluated through dynamic light scattering (DLS) assay. According to the results, PEG containing 43.5 ppm of Au demonstrated superior biocompatibility and biological properties for mesenchymal stem cells (MSCs), as well as superior osteogenic differentiation, adipocyte differentiation, and, particularly, neuronal differentiation. Indeed, PEG-Au 43.5 ppm induced better cell adhesion, proliferation and migration in MSCs. The higher expression of the SDF-1α/CXCR4 axis may be associated with MMPs activation and may have also promoted the differentiation capacity of MSCs. Moreover, it also prevented MSCs from apoptosis and inhibited macrophage and platelet activation, as well as reactive oxygen species (ROS) generation. Furthermore, the anti-inflammatory, biocompatibility, and endothelialization capacity of PEG-Au was measured in a rat model. After implanting the nanocomposites into rats subcutaneously for 4 weeks, PEG-Au 43.5 ppm was able to enhance the anti-immune response through inhibiting CD86 expression (M1 polarization), while also reducing leukocyte infiltration (CD45). Moreover, PEG-Au 43.5 ppm facilitated CD31 expression and anti-fibrosis ability. Above all, the PEG-Au nanocomposite was evidenced to strengthen the differentiation of MSCs into various cells, including fat, vessel, and bone tissue and, particularly, nerve cells. This research has elucidated that PEG combined with the appropriate amount of Au nanoparticles could become a potential biomaterial able to cooperate with MSCs for tissue regeneration engineering.


Asunto(s)
Diferenciación Celular , Oro/química , Inflamación/patología , Células Madre Mesenquimatosas/patología , Nanopartículas del Metal/química , Neuronas/patología , Polietilenglicoles/química , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Materiales Biocompatibles/química , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CXCL12/metabolismo , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas Sprague-Dawley , Receptores CXCR4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...