Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 167: 107568, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37890419

RESUMEN

Microscopic hyperspectral images has the advantage of containing rich spatial and spectral information. However, the large number of spectral bands provides a significant amount of spectral features, but also leads to data redundancy and noise, which seriously affect the recognition and classification performance of the images, as well as increasing the requirements for computation and storage. To address this issue, we propose a dimensionality reduction algorithm named enhanced discriminant local constraint preserving projection (EDLCPP). Specifically, the global spectral attention mechanism focuses on important bands, the high discriminability sample selection module measures the discriminability of samples using a modified average neighborhood margin, the graph construction module preserves the local geometric relationship and discriminant information, and the graph embedding module embeds the constructed graphs into a low-dimensional space to obtain the projection matrices. Experimental results on eight cholangiocarcinoma (CCA) hyperspectral images, Bloodcell1-3, and Bloodcell2-2 datasets have demonstrated the effectiveness of the proposed method.


Asunto(s)
Algoritmos , Reconocimiento de Normas Patrones Automatizadas , Reconocimiento de Normas Patrones Automatizadas/métodos
2.
Food Chem Toxicol ; 177: 113811, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37179046

RESUMEN

Zearalenone (ZEA) is a mycotoxin commonly found in cereals and feedstuffs, which can induce oxidative stress and inflammation to cause liver damage in humans and animals. Betulinic acid (BA) is extracted from pentacyclic triterpenoids of many natural plants and has anti-inflammatory, and anti-oxidation biological activities in many studies. However, the protective effect of BA on liver injury induced by ZEA has not been reported. Therefore, this study aims to explore the protective effect of BA on ZEA-induced liver injury and its possible mechanism. In the mice experiment, ZEA exposure increased the liver index and caused histopathological impairment, oxidative damage, hepatic inflammatory responses, and increased hepatocyte apoptosis. However, when combined with BA, it could inhibit the production of ROS, up-regulate the proteins expression of Nrf2 and HO-1 and down-regulate the expression of Keap1, and alleviate oxidative damage and inflammation in the liver of mice. In addition, BA could alleviate ZEA-induced apoptosis and liver injury in mice by inhibiting the endoplasmic reticulum stress (ERS) and MAPK signaling pathways. In conclusion, this study revealed the protective effect of BA on the hepatotoxicity of ZEA for the first time, providing a new perspective for the development of ZEA antidote and the application of BA.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Zearalenona , Humanos , Ratones , Animales , Zearalenona/toxicidad , Zearalenona/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Betulínico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Transducción de Señal , Estrés Oxidativo , Inflamación , Estrés del Retículo Endoplásmico , Apoptosis
3.
Foods ; 12(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37107412

RESUMEN

Damage to the reproductive system is the key factor leading to male infertility. Citrinin (CTN) is produced by Penicillium and Aspergillus in nature, and is definitely found in food and animal feed. Studies have revealed that CTN can cause damage to male reproductive organs and reduce fertility, but the mechanism of toxicity has not been revealed. In the present study, male Kunming mice were given different doses of CTN (0, 1.25, 5 or 20 mg/kg BW) by intragastric administration. The results demonstrated that CTN exposure caused disorder of androgen, a decline in sperm quality, and histopathological damage of testis. The inhibition of the expression of ZO-1, claudin-1 and occludin suggests that the blood-testis barrier (BTB) was damaged. Simultaneously, CTN inhibited the activity of antioxidant enzymes such as CAT and SOD, and promoted the production of MDA and ROS, resulting in oxidative damage of testis. Additionally, apoptotic cells were detected and the ratio of Bax/Bcl-2 was increased. Not only that, CTN activated the expression of endoplasmic reticulum stress (ERS)-related proteins IRE1, ATF6, CHOP, and GRP78. Interestingly, 4-Phenylbutyric Acid (4-PBA, an ERS inhibitor) treatment blocked the adverse effects of CTN exposure on male reproduction. In short, the findings suggested that CTN exposure can cause damage to mouse testis tissue, in which ERS exhibited an important regulatory role.

4.
Tree Physiol ; 43(7): 1233-1249, 2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-37017317

RESUMEN

Long noncoding ribonucleic acids (lncRNAs) play crucial roles in regulating key biological processes; however, our knowledge of lncRNAs' roles in plant adaptive evolution is still limited. Here, we determined the divergence of conserved lncRNAs in closely related poplar species that were either tolerant or sensitive to salt stress by comparative transcriptome analysis. Among the 34,363 identified lncRNAs, ~3% were shared among poplar species with conserved sequences but diversified in their function, copy number, originating genomic region and expression patterns. Further cluster analysis revealed that the conserved lncRNAs showed more similar expression patterns within salt-tolerant poplars (Populus euphratica and P. pruinosa) than between salt-tolerant and salt-sensitive poplars. Among these lncRNAs, the antisense lncRNA lncERF024 was induced by salt and the differentiated expression between salt-sensitive and salt-tolerant poplars. The overexpression of lncERF024 in P. alba var. pyramidalis enhanced poplar tolerance to salt stress. Furthermore, RNA pull-down and RNA-seq analysis showed that numerous candidate genes or proteins associated with stress response and photosynthesis might be involved in salt resistance in PeulncERF024-OE poplars. Altogether, our study provided a novel insight into how the diversification of lncRNA expression contributes to plant adaptation traits and showed that lncERF024 may be involved in the regulation of both gene expression and protein function conferring salt tolerance in Populus.


Asunto(s)
Populus , ARN Largo no Codificante , Transcriptoma , ARN Largo no Codificante/genética , Populus/genética , Perfilación de la Expresión Génica , Estrés Salino/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
5.
Membranes (Basel) ; 13(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36837645

RESUMEN

Plant cell signaling often relies on the cellular organization of receptor-like kinases (RLKs) within membrane nanodomains to enhance signaling specificity and efficiency. Thus, nanometer-scale quantitative analysis of spatial organizations of RLKs could provide new understanding of mechanisms underlying plant responses to environmental stress. Here, we used stochastic optical reconstruction fluorescence microscopy (STORM) to quantify the colocalization of the flagellin-sensitive-2 (FLS2) receptor and the nanodomain marker, remorin, within Arabidopsis thaliana root hair cells. We found that recovery of FLS2 and remorin in the plasma membrane, following ligand-induced internalization by bacterial-flagellin-peptide (flg22), reached ~85% of their original membrane density after ~90 min. The pairs colocalized at the membrane at greater frequencies, compared with simulated randomly distributed pairs, except for directly after recovery, suggesting initial uncoordinated recovery followed by remorin and FLS2 pairing in the membrane. The purinergic receptor, P2K1, colocalized with remorin at similar frequencies as FLS2, while FLS2 and P2K1 colocalization occurred at significantly lower frequencies, suggesting that these RLKs mostly occupy distinct nanodomains. The chitin elicitor receptor, CERK1, colocalized with FLS2 and remorin at much lower frequencies, suggesting little coordination between CERK1 and FLS2. These findings emphasize STORM's capacity to observe distinct nanodomains and degrees of coordination between plant cell receptors, and their respective immune pathways.

6.
J Ethnopharmacol ; 304: 116028, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36529250

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Koumine, an indole alkaloid extracted from Gelsemium elegans Benth, exerts anti-inflammation and antioxidant activities. However, the effects of koumine on intestinal injury induced by H2O2 and its potential molecular mechanisms need larger studies. AIM OF THE STUDY: We established an IPEC-J2 cell damage model induced by H2O2 to explore the protective mechanism of koumine on intestinal injury. MATERIALS AND METHODS: In the experiment, cell damage models were made with hydrogen peroxide. To assess the protective effect of koumine on H2O2-induced IPEC-J2 cell injury, CCK-8, the release of LDH and ROS, transmission electron microscopy and Annexin V-FITC/PI were employed. Western Blot and Quantitative Real-time PCR were used to determine the potential alleviated mechanism of koumine on H2O2-trigged IPEC-J2 cell damage. RESULTS: The results of CCK-8 and LDH implied that koumine has a mitigative effect on H2O2-induced cell damage via upregulating cell viability and suppressing cell membrane fragmentation. Simultaneously, koumine notably inhibited the level of pro-inflammatory factors (IL-1ß, IL-6, IL-8, TNF-α and TGF-ß), the over-production of ROS along with decreasing the injury of mitochondrion, endoplasmic reticulum and lysosome induced by H2O2. Moreover, koumine dramatically attenuated H2O2-triggered IPEC-J2 cell apoptosis and autophagy. Subsequently, Western blot analysis identified NF-ΚB, PI3K and ERS as possible pathway responsible for the protective effect of koumine on H2O2-stimulated IPEC-J2 cell inflammation. CONCLUSIONS: This in vitro experimental study suggests that koumine suppresses the H2O2-induced activation of inflammatory pathways, oxidative injury, ER stress, apoptosis and autophagy, which provide a rationale for therapeutically use in major intestinal diseases.


Asunto(s)
Peróxido de Hidrógeno , FN-kappa B , FN-kappa B/metabolismo , Peróxido de Hidrógeno/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas , Sincalida/farmacología , Línea Celular , Alcaloides Indólicos/farmacología , Serina-Treonina Quinasas TOR , Apoptosis
7.
Environ Pollut ; 316(Pt 1): 120435, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36257561

RESUMEN

Zearalenone (ZEA) is a mycotoxin with estrogen-like biological activity, which widely present in feed and raw materials, with strong reproductive system toxicity and a major threat to animal reproduction. Betulinic acid (BA) is a natural plant compound with antioxidant, anti-inflammatory and other pharmacological activities. However, the mechanism of ZEA-induced uterine injury and the protective effect of BA have not been reported. Our results show that ZEA could cause uterine histopathological damage and cellular ultrastructural damage, affecting the secretion of sex hormones, such as estradiol (E2) and progesterone (P4), and increase the mRNA and protein expression of estrogen receptor α (ERα). ZEA could inhibit the activities of catalase (CAT) and superoxide dismutase (SOD), increase the production of malondialdehyde (MDA) and reactive oxygen species (ROS), and cause uterine oxidative stress. Furthermore, ZEA affected the homeostasis of uterine cell proliferation and death by regulating the expression of proliferating cell nuclear antigen (PCNA) and activating the mitochondrial apoptotic pathway. ZEA-induced uterine injury might be related to the activation of p38/ERK MAPK signaling pathway. However, the regulatory effect of ZEA on the uterus was reversed after BA treatment. In conclusion, the uterus is an important target organ attacked by ZEA, and BA showed a good therapeutic effect.


Asunto(s)
Zearalenona , Femenino , Ratones , Animales , Zearalenona/toxicidad , Triterpenos Pentacíclicos/farmacología , Estrés Oxidativo , Útero , Apoptosis , Ácido Betulínico
8.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36236328

RESUMEN

Semiconducting polymer dots (Pdots) are rapidly becoming one of the most studied nanoparticles in fluorescence bioimaging and sensing. Their small size, high brightness, and resistance to photobleaching make them one of the most attractive fluorophores for fluorescence imaging and sensing applications. This paper highlights our recent advances in fluorescence bioimaging and sensing with nanoscale luminescent Pdots, specifically the use of organic dyes as dopant molecules to modify the optical properties of Pdots to enable deep red and near infrared fluorescence bioimaging applications and to impart sensitivity of dye doped Pdots towards selected analytes. Building on our earlier work, we report the formation of secondary antibody-conjugated Pdots and provide Cryo-TEM evidence for their formation. We demonstrate the selective targeting of the antibody-conjugated Pdots to FLAG-tagged FLS2 membrane receptors in genetically engineered plant leaf cells. We also report the formation of a new class of luminescent Pdots with emission wavelengths of around 1000 nm. Finally, we demonstrate the formation and utility of oxygen sensing Pdots in aqueous media.


Asunto(s)
Polímeros , Puntos Cuánticos , Colorantes Fluorescentes , Oxígeno , Semiconductores
9.
Toxins (Basel) ; 14(4)2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35448868

RESUMEN

Citrinin (CTN) is a mycotoxin found in crops and agricultural products and poses a serious threat to human and animal health. The aim of this study is to investigate the hepatotoxicity of CTN in mice and analyze its mechanisms from Ca2+-dependent endoplasmic reticulum (ER) stress perspective. We showed that CTN induced histopathological damage, caused ultrastructural changes in liver cells, and induced abnormal values of biochemical laboratory tests of some liver functions in mice. Treatment with CTN could induce nitric oxide (NO), malondialdehyde (MDA), and reactive oxygen species (ROS) accumulation in mice, accompanied with losses of activities of superoxide dismutase (SOD) and catalase (CAT), levels of glutathione (GSH), and capacities of total antioxidant (T-AOC), resulting in oxidative stress in mice. Furthermore, CTN treatment significantly increased Ca2+ accumulation, upregulated protein expressions of ER stress-mediated apoptosis signal protein (glucose regulated protein 78 (GRP78/BIP), C/EBP-homologous protein (CHOP), Caspase-12, and Caspase-3), and induced hepatocyte apoptosis. These adverse effects were counteracted by 4-phenylbutyric acid (4-PBA), an ER stress inhibitor. In summary, our results showed a possible underlying molecular mechanism for CTN that induced hepatocyte apoptosis in mice by the regulation of the Ca2+/ER stress signaling pathway.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Citrinina , Animales , Apoptosis , Citrinina/metabolismo , Citrinina/toxicidad , Estrés del Retículo Endoplásmico , Glutatión/metabolismo , Ratones , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
10.
ACS Appl Mater Interfaces ; 14(18): 20790-20801, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35451825

RESUMEN

Near-infrared (NIR) fluorescent semiconductor polymer dots (Pdots) have shown great potential for fluorescence imaging due to their exceptional chemical and photophysical properties. This paper describes the synthesis of NIR-emitting Pdots with great control and tunability of emission peak wavelength. The Pdots were prepared by doping poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT), a semiconducting polymer commonly used as a host polymer in luminescent Pdots, with a series of chlorins and bacteriochlorins with varying functional groups. Chlorins and bacteriochlorins are ideal dopants due to their high hydrophobicity, which precludes their use as molecular probes in aqueous biological media but on the other hand prevents their leakage when doped into Pdots. Additionally, chlorins and bacteriochlorins have narrow deep red to NIR-emission bands and the wide array of synthetic modifications available for modifying their molecular structure enables tuning their emission predictably and systematically. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements show the chlorin- and bacteriochlorin-doped Pdots to be nearly spherical with an average diameter of 46 ± 12 nm. Efficient energy transfer between PFBT and the doped chlorins or bacteriochlorins decreases the PFBT donor emission to near baseline level and increases the emission of the doped dyes that serve as acceptors. The chlorin- and bacteriochlorin-doped Pdots show narrow emission bands ranging from 640 to 820 nm depending on the doped dye. The paper demonstrates the utility of the systematic chlorin and bacteriochlorin synthesis approach by preparing Pdots of varying emission peak wavelength, utilizing them to visualize multiple targets using wide-field fluorescence microscopy, binding them to secondary antibodies, and determining the binding of secondary antibody-conjugated Pdots to primary antibody-labeled receptors in plant cells. Additionally, the chlorin- and bacteriochlorin-doped Pdots show a blinking behavior that could enable their use in super-resolution imaging methods like STORM.


Asunto(s)
Polímeros , Puntos Cuánticos , Microscopía Fluorescente , Imagen Óptica/métodos , Polímeros/química , Puntos Cuánticos/química , Semiconductores
11.
Part Fibre Toxicol ; 19(1): 31, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35477523

RESUMEN

BACKGROUND: Carbon dot has been widely used in biomedical field as a kind of nanomaterial with low toxicity and high biocompatibility. CDs has demonstrated its unique advantages in assisted drug delivery, target diagnosis and targeted therapy with its small size and spontaneous fluorescence. However, the potential biosafety of CDs cannot be evaluated. Therefore, we focused on the study of liver, the target organ involved in CDs metabolism, to evaluate the risk of CDs in vitro. METHODS AND RESULTS: Liver macrophage KUP5 cells and normal liver cells AML12 cells were incubated in CDs at the same concentration for 24 h to compare the different effects under the same exposure conditions. The study found that both liver cell models showed ATP metabolism disorder, membrane damage, autophagosome formation and lysosome damage, but the difference was that, KUP5 cells exhibited more serious damage than AML12 cells, suggesting that immunogenic cell type is particularly sensitive to CDs. The underlying mechanism of CDs-induced death of the two hepatocyte types were also assessed. In KUP5 cells, death was caused by inhibition of autophagic flux caused by autophagosome accumulation, this process that was reversed when autophagosome accumulation was prevented by 3-MA. AML12 cells had no such response, suggesting that the accumulation of autophagosomes caused by CDs may be specific to macrophages. CONCLUSION: Activation of the TFEB-lysosome pathway is important in regulating autophagy and apoptosis. The dual regulation of ERK and mTOR phosphorylation upstream of TFEB influences the death outcome of AML12 cells. These findings provide a new understanding of how CDs impact different liver cells and contribute to a more complete toxicological safety evaluation of CDs.


Asunto(s)
Puntos Cuánticos , Carbono/toxicidad , Muerte Celular , Hepatocitos , Macrófagos del Hígado , Lisosomas , Puntos Cuánticos/toxicidad
12.
Ecotoxicol Environ Saf ; 237: 113531, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483142

RESUMEN

Citrinin, a secondary metabolite, can pose serious risks to the environment and organisms, but its hepatotoxic mechanisms are still unclear. Histopathological and ultrastructural results showed that citrinin-induced liver injury in Kunming mice, and the mechanism of citrinin-induced hepatotoxicity was studied in L02 cells. Firstly, citrinin mades L02 cell cycle arrest in G2/M phase by inhibition of cyclin B1, cyclin D1, cyclin-dependent kinases 2 (CDK2), and CDK4 expression. Secondly, citrinin inhibits proliferation and promotes apoptosis of L02 cells via disruption of mitochondria membrane potential, increase Bax/Bcl-2 ration, activation of caspase-3, 9, and enhance lactate dehydrogenase (LDH) release. Then, citrinin inhibits superoxide dismutase (SOD) activity and increases the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS), resulting oxidative damage in L02 cells; upregulates the protein expression of binding immunoglobulin protein (Bip), C/EBP homologous protein (CHOP), PKR-like ER kinase (PERK) and activating transcription factor6 (ATF6), inducing ER stress in L02 cells; increases the phosphorylation of AMP-activated protein kinase (AMPK) and decreases the content of adenosine-triphosphate (ATP), activating AMPK pathway in L02 cells. Eventually, pretreatment with NAC, an ROS inhibitor, alleviates citrinin-induced cell cycle G2/M arrest and apoptosis by inhibiting ROS-mediated ER stress; pretreatment with 4-PBA, an ER stress inhibitor, reversed ER stress and p-AMPK; pretreatment with dorsomorphin, an AMPK inhibitor, decreases citrinin-induced cell cycle G2/M arrest and apoptosis. In summary, citrinin induces cell cycle arrest and apoptosis to aggravate liver injury by activating ROS-ER stress-AMPK signaling pathway.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Citrinina , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Citrinina/metabolismo , Citrinina/toxicidad , Estrés del Retículo Endoplásmico , Puntos de Control de la Fase G2 del Ciclo Celular , Ratones , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
13.
Arch Microbiol ; 204(3): 195, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217920

RESUMEN

The spread of biodegradable plastic films (BDFs) not only increases grain yield but also reduces environmental pollution from plastic film to a large extent. Soil microbes are considered to be involved in biodegradation processes. However, the study of microbe diversity in soil mulched with biodegradable plastic film remains limited. Here, we compared the diversity of microbes between soils with biodegradable film and nonbiodegradable film (NBDF) mulch. The results showed that BDFs affected total C, P and NH4+-N, especially organism C content, as well as microbe species richness (ACE; Chao1) and diversity (Simpson index; Shannon index). In terms of dominant phyla and genera, BDFs and NBDF can influence the abundance of disparate species. Furthermore, BDFs could also contribute to improving the richness of the important functional bacterial groups in soil, e.g., Pedomicrobium and Comamonas, both of which are involved in the degradation of plastic residues in soil. Finally, we found that BDFs improved the transformation of nitrogen by significantly increasing the abundances of Nitrobacter and Nitrospira. Our results highlight the impact of BDF mulch on the abundance of functional bacteria in the soil.


Asunto(s)
Agricultura , Suelo , Bacterias/genética , China , Plásticos , Suelo/química , Microbiología del Suelo
14.
Front Plant Sci ; 12: 722733, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490020

RESUMEN

Ubiquitin-dependent protein degradation plays an important role in many plant developmental processes. We previously identified a class of SINA RING-type E3 ligases of Arabidopsis thaliana (SINATs), whose protein levels decrease in the dark and increase in red and blue light, but the underlying mechanism is unclear. In this study, we created transgenic lines carrying point mutations in SINAT genes and photoreceptors-NLS or -NES transgenic plants to investigate the regulatory mechanism of SINAT protein stability. We demonstrated that the degradation of SINATs is self-regulated, and SINATs interact with photoreceptors phytochrome B (phyB) and cryptochrome 1 (CRY1) in the cytoplasm, which leads to the degradation of SINATs in the dark. Furthermore, we observed that the red light-induced subcellular localization change of phyB and blue light-induced the dissociation of CRY1 from SINATs and was the major determinant for the light-promoted SINATs accumulation. Our findings provide a novel mechanism of how the stability and degradation of the E3 ligase SINATs are regulated by an association and dissociation mechanism through the red light-induced subcellular movement of phyB and the blue light-induced dissociation of CRY1 from SINATs.

15.
World J Microbiol Biotechnol ; 37(9): 155, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34398324

RESUMEN

Fe(III) reducing bacteria (FeRB) play a vital role in the biogeochemical cycle of Fe, C and N in nature. The volcanic lake can be considered as an ideal habitat for FeRB. Here, we investigated the diversity and spatial distribution of FeRB in sediments of Wenbo lake in Wudalianchi volcano based on culture-dependent and independent methods. A total of 28 isolates affiliated with the genera of Enterobacter, Bacillus, Pseudomonas and Clostridium were obtained from 18 sediment samples. We detected 783 operational taxonomic units (OTUs) belonged to FeRB using high high-throughput sequencing, and the dominant phyla were Proteobacteria (3.65%), Acidobacteria (0.29%), Firmicutes (10.78%). The representative FeRB genera such as Geobacter, Pseudomonas, Thiobacillus and Acinetobacter distributed widely in Wenbo lake. Results showed that the diversity and abundance of FeRB declined along the water-flow direction from Libo to Jingbo. In contrast, the FeRB diversity decreased and the FeRB abundance increased along with depth transect of sediments. It was found that the dominant phylum changed from Firmicutes to Proteobacteria along the water-flow direction, while changed from Proteobacteria to Firmicutes along with the depth of sediments. RDA indicated that the FeRB distribution were driven by soluble total iron, total organic carbon, Fe(II) and Fe(III). These will provide information for understanding the role of FeRB in the elements geochemical cycles in the volcanic environment.


Asunto(s)
Bacterias/clasificación , Carbono/metabolismo , Sedimentos Geológicos/microbiología , Hierro/metabolismo , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , ADN Bacteriano/genética , ADN Ribosómico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Lagos/microbiología , Filogenia , Análisis de Secuencia de ADN , Erupciones Volcánicas/análisis , Microbiología del Agua
16.
3 Biotech ; 10(11): 475, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33088669

RESUMEN

A variety of biological materials including schwertmannite, jarosite, iron-sulfur cluster (ISC) and magnetosomes can be produced by Acidithiobacillus ferrooxidans (A. ferrooxidans). Their possible formation mechanisms involved in iron transformation, iron transport, and electron transfer were proposed. The schwertmannite formation usually occurs under the pH of 2.0-3.51, and a lower or higher pH will promote jarosite to be produced. Available Fe2+ in the environment and the carrier proteins that can transport Fe2+ to the intracellular membranes of A. ferrooxidans play a critical role in the synthesis of magnetosomes and ISC. The potential applications of these biological materials were reviewed, including removal of heavy metal by schwertmannite, detoxification of toxic species by jarosite, the transference of electron and ripening the iron sulfur protein by ISC, and biomedical application of magnetosomes. Additionally, some perspectives for the molecular mechanisms of synthesis and regulation of these biomaterials were briefly described.

17.
Chemosphere ; 251: 126440, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32169699

RESUMEN

Carbon dots (CDs) are an emerging fluorescent nano-imaging probe due to their unique characteristics, such as good conductivity, carbon-based chemical composition, and photochemical stability, which sets up the potential of outperforming the classic metal-based quantum dots (QDs). It is a timely effort to proactively investigate the biocompatibility feature of CDs with a view to safely utilize this emerging nanomaterial in biological systems. In this study, we assessed the safety profile of an in-house synthesized CDs in hepatocyte-like Hepa 1-6 cells, which represents an important target organ for CDs exposure through either particle uptake and/or accumulation and elimination from primary exposure sites post particle administration. We not only demonstrated a dose- and time-dependent compromised cell viability, but also observed the induction of autophagy at high concentration (i.e. 400 µg mL-1), authenticated by the conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II. We attributed these changes as the protective mechanism by which the cells used to compensate for CDs-induced apoptosis and cytotoxicity. The involvement of autophagy was further confirmed because the cytotoxicity profile can be increased or reduced by the use of 3-MA (autophagy inhibitor) and NAC (ROS inhibitor), respectively. Collectively, our findings revealed dose-dependent moderate cytotoxicity in Hepa 1-6 cells. Mechanistic understanding of autophagy during the cellular process revealed the homeostasis when liver cells deal with CDs as an external insult.


Asunto(s)
Puntos Cuánticos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Animales , Autofagia , Carbono/química , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Colorantes Fluorescentes , Hepatocitos/metabolismo , Metales , Ratones Endogámicos C57BL , Nanoestructuras , Puntos Cuánticos/química
18.
Anal Chem ; 92(1): 983-990, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31742384

RESUMEN

Due to exceptional electron-accepting ability, light-absorption, and a delocalized conjugated structure, buckminsterfullerene (C60) has attracted fascinating interest in the field of organic solar cells. However, poor delocalization and accumulation of electrons for pristine C60 in physiological aqueous solution and difficulties in conjugation with biomolecules limit its extended photovoltaic applications in bioassay. Herein, we reported the noncovalent coupling of C60 to an electronically complementary porphyrin-derived metal-organic framework (PCN-224) with carboxyl-group terminals. Such assembly not only offered a friendly interface for bioconjugation but also resulted in a long-range ordering C60@PCN-224 donor-acceptor system that demonstrated an unprecedented photocurrent enhancement up to 10 times with respect to each component. As an example, by further cooperating with Nanobodies, the as-prepared C60@PCN-224 was applied to a photoelectrochemical (PEC) immunosensor for S100 calcium-binding protein B with by far the most promising detection activities. This work may open a new venue to unlock the great potential of C60 in PEC biosensing with excellent performances.


Asunto(s)
Técnicas Electroquímicas/métodos , Fulerenos/química , Inmunoensayo/métodos , Estructuras Metalorgánicas/química , Biomarcadores/sangre , Técnicas Biosensibles/métodos , Fulerenos/efectos de la radiación , Humanos , Luz , Límite de Detección , Estructuras Metalorgánicas/efectos de la radiación , Porfirinas/química , Porfirinas/efectos de la radiación , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados , Subunidad beta de la Proteína de Unión al Calcio S100/sangre , Subunidad beta de la Proteína de Unión al Calcio S100/inmunología , Anticuerpos de Dominio Único/inmunología
19.
Chemistry ; 25(43): 10188-10196, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31192495

RESUMEN

The fabrication of carbon dots and their doped forms by top-down chemical cleavage has attracted considerable attention in the efforts to meet the increasing demands for optoelectronic applications ranging from biosensing to electro- and photocatalysis. However, due to strong quantum confinement effects, the size decrease often leads to an increase in the band gap, even in the emission of deep-ultraviolet (DUV) light, which greatly limits their applications. Here, we report a facile hot-tailoring strategy for fabricating carbon nitride nanodots (CNDs) with redshifted intrinsic photoluminescent (PL) emission, compared with the pristine bulk precursor. It has been found that the different leaving abilities of the C,N-containing groups during the pyrolysis stage and the chemical passivation during the liquid-collection stage played vital roles. Due to the redshifted photoluminescence and other attractive features, the as-obtained CNDs were successfully applied in visual double text encryption with higher security and also in bioimaging with photostability superior to traditional dyes. This work highlights the great potential of the hot-tailoring method in modulating carbon-based nanostructures and offsetting band-gap widening as the size decreases.


Asunto(s)
Nitrilos/química , Puntos Cuánticos/química , Supervivencia Celular/efectos de los fármacos , Humanos , Células MCF-7 , Microscopía Confocal , Espectroscopía de Fotoelectrones , Pirólisis , Puntos Cuánticos/toxicidad , Espectrometría de Fluorescencia , Rayos Ultravioleta
20.
World J Microbiol Biotechnol ; 35(4): 60, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30919119

RESUMEN

Acidithiobacillus ferrooxidans is a gram-negative, autotrophic and rod-shaped bacterium. It can gain energy through the oxidation of Fe(II) and reduced inorganic sulfur compounds for bacterial growth when oxygen is sufficient. It can be used for bio-leaching and bio-oxidation and contributes to the geobiochemical circulation of metal elements and nutrients in acid mine drainage environments. The iron and sulfur oxidation pathways of A. ferrooxidans play key roles in bacterial growth and survival under extreme circumstances. Here, the electrons transported through the thermodynamically favourable pathway for the reduction to H2O (downhill pathway) and against the redox potential gradient reduce to NAD(P)(H) (uphill pathway) during the oxidation of Fe(II) were reviewed, mainly including the electron transport carrier, relevant operon and regulation of its expression. Similar to the electron transfer pathway, the sulfur oxidation pathway of A. ferrooxidans, related genes and operons, sulfur oxidation mechanism and sulfur oxidase system are systematically discussed.


Asunto(s)
Acidithiobacillus/enzimología , Acidithiobacillus/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Acidithiobacillus/genética , Acidithiobacillus/crecimiento & desarrollo , Azurina/metabolismo , Transporte Biológico Activo , Citocromos c/metabolismo , Dioxigenasas/metabolismo , Transporte de Electrón/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Hidrolasas/metabolismo , Redes y Vías Metabólicas/genética , Operón/genética , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Oxígeno/metabolismo , Compuestos de Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...