Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 1): 130636, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467214

RESUMEN

In insects, vision is crucial in finding host plants, but its role in nocturnal insects is largely unknown. Vision involves responses to specific spectra of photon wavelengths and opsins plays an important role in this process. Long-wavelength sensitive opsin (LW opsin) and blue-sensitive opsin (BL opsin) are main visual opsin proteins and play important in behavior regulation.We used CRISPR/Cas9 technology to mutate the long-wavelength-sensitive and blue wavelength-sensitive genes and explored the role of vision in the nocturnal invasive pest Tuta absoluta. Light wave experiments revealed that LW2(-/-) and BL(-/-) mutants showed abnormal wavelength tropism. Both LW2 and BL mutations affected the preference of T. absoluta for the green environment. Mutations in LW2 and BL are necessary to inhibit visual attraction. The elimination of LW2 and BL affected the preference of leaf moths for green plants, and mutations in both induced a preference in moths for white plants. Behavioral changes resulting from LW2(-/-) and BL(-/-) mutants were not affected by sense of smell, further supporting the regulatory role of vision in insect behavior. To the best of our knowledge, this is the first study to reveal that vision, not smell, plays an important role in the host-seeking behavior of nocturnal insects at night, of which LW2 and BL opsins are key regulatory factors. These study findings will drive the development of the "vision-ecology" theory.


Asunto(s)
Visión de Colores , Mariposas Nocturnas , Animales , Opsinas/genética , Opsinas/metabolismo , Especies Introducidas , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Insectos/metabolismo
2.
Insects ; 11(7)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659981

RESUMEN

Successful biological control of the whitefly Bemisia tabaci involves the mass rearing of biocontrol agents in large numbers for field release. Cold storage of the biocontrol agents is often necessary to provide a sufficient number of biocontrol agents during an eventual pest outbreak. In this study, the fitness of two whitefly parasitoids Encarsia sophia Girault and Dodd (Hymenoptera: Aphelinidae) and Eretmocerus hayati Zolnerowich and Rose (Hymenoptera: Aphelinidae) was evaluated under fluctuating cold storage temperatures. The emergence rate of old pupae of either species was not affected when stored at 12, 10, 8 and 6 °C for 1 week. Cold storage had no effect on the longevity of the emerging adult En. sophia except young pupae stored at 4 °C, while Er. hayati was negatively affected after 2 weeks of storage time at all temperatures. Parasitism by adults emerging from older pupae stored at 12 °C for 1 week was equivalent to the control. Combined with the results for the emergence time, we suggest that the old pupal stage of En. sophia and Er. hayati could be stored at 12 and 10 °C, respectively (transferred every 22 h to 26 ± 1 °C for 2 h), for 1 week, with no or little adverse effect.

3.
Pest Manag Sci ; 76(1): 366-374, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31219649

RESUMEN

BACKGROUND: The whitefly, Bemisia tabaci (Gennadius) MED, is a destructive insect pest in many countries of the world. Although the use of insecticides for controlling B. tabaci has been effective to a certain extent, pesticides are not an acceptable long-term control method, and alternatives should be sought. This paper focuses on the possibility of controlling B. tabaci on cotton using trap and barrier crops. We performed field experiments using cantaloupe (Cucumis melo) and sunflower (Helianthus annuus) as trap crops, and maize (Zea mays) as a barrier crop in various configurations in Hebei Province, North China. RESULTS: The main activity periods were shortest on cantaloupe and ranged between 16-32 days for immatures and 14-33 days for adults. Adult whitefly densities were not significantly reduced by any treatment. During the main activity period, maize intercropping reduced densities of immature whiteflies from 24.2 individuals (ind.) 100 cm-2 to 4.0 ind.100 cm-2 , but all treatments were successful in significantly reducing immature B. tabaci densities. This resulted in a significant yield premium. CONCLUSIONS: Intercropping reduced B. tabaci densities on cotton more than perimeter planting. Maize was more effective to reduce densities of immature whiteflies on cotton than cantaloupe. The results will contribute to the development of more effective and practical approaches for protecting cotton from B. tabaci and lowering chemical pressure on this crop. © 2019 Society of Chemical Industry.


Asunto(s)
Cucumis melo , Hemípteros , Animales , China , Productos Agrícolas , Insecticidas
4.
Pest Manag Sci ; 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29528561

RESUMEN

BACKGROUND: The autoparasitoid Encarsia sophia and the primary parasitoid Eretmocerus hayati are two important parasitoids used against the whitefly Bemisia tabaci, with different reproductive strategies. To incorporate these two parasitoids into a sustainable whitefly control program, it is necessary to evaluate and compare their fitness and biocontrol effectiveness under identical experimental conditions. The demographic characteristics, parasitism rate and host-feeding rate of En. sophia and Er. hayati were analyzed using an age-stage, two-sex life table and the CONSUME-MSChart computer program. RESULTS: The mean fecundity of Er. hayati (211.4 offspring per female) was significantly higher than that of En. sophia (101.6 offspring per female), although the oviposition days of En. sophia was longer than that of Er. hayati. No significant difference was found in the intrinsic rate of increase (r), finite rate of increase (λ) or net reproduction rate (R0 ) between the two parasitoid species, but the mean generation time (T) of En. sophia (18.8 days) was significantly shorter than that of Er. hayati (20.5 days). The net host feeding rate (C0 ) of En. sophia was 84.1 whiteflies per individual, significantly higher than the 17.6 whiteflies per individual consumed by Er. hayati. The finite killing rate (ν) of En. sophia (0.6713) for whitefly was significantly greater than that produced by Er. hayati (0.3652). CONCLUSION: The En. sophia population can increase faster and have a higher killing potential than the Er. hayati population. Taking both the demographic fitness and killing potential of the two parasitoids into consideration, En. sophia would be the preferred choice to release in a biological control program. © 2018 Society of Chemical Industry.

5.
Insect Sci ; 23(1): 134-44, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25393924

RESUMEN

The functional responses of two parasitoids, Eretmocerus hayati Zolnerowich & Rose and Encarsia sophia Girault & Dodd, of whitefly Bemisia tabaci Gennadius Middle East-Asia Minor 1 were studied under laboratory conditions. In addition, the influence of host density and host stage on the competitive interactions between the two parasitoids, and biological control effect on whitefly were evaluated. In the functional response study, adult parasitoids were tested individually, with a conspecific or heterospecific competitor. Both Er. hayati and En. sophia exhibited a type II response to increasing host density, whether a conspecific or heterospecific competitor was present or not. Difference of searching rates and handling times between treatments suggested interference interactions existed between two parasitoid species. In the host stage preference study, two parasitoid species were jointly tested. Er. hayati had a competitive advantage over En. sophia when provided young host instars (first and second instar), whereas no advantage was found on old host instars (third and fourth instar). The biological control effect of Er. hayati and En. sophia in different introductions varied with host density. However, the effect of host instar on host mortality was not significant. These findings provide information for the practice of biological control and give better insight into how parasitoid species may coexist in diverse environments.


Asunto(s)
Hemípteros/parasitología , Interacciones Huésped-Parásitos , Himenópteros/fisiología , Control Biológico de Vectores , Animales , Femenino , Gossypium , Hemípteros/crecimiento & desarrollo , Hemípteros/fisiología , Ninfa/parasitología
6.
Annu Rev Entomol ; 61: 77-98, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26527302

RESUMEN

China is the world's fourth-largest country in terms of landmass. Its highly diverse biogeography presents opportunities for many invasive alien insects. However, physical and climate barriers sometimes prevent locally occurring species from spreading. China has 560 confirmed invasive alien species; 125 are insect pests, and 92 of these damage the agricultural ecosystem. The estimated annual economic loss due to alien invasive species is more than $18.9 billion. The most harmful invasive insects exhibit some common characteristics, such as high reproduction, competitive dominance, and high tolerance, and benefit from mutualist facilitation interactions. Regional cropping system structure adjustments have resulted in mono-agricultural ecosystems in cotton and other staple crops, providing opportunities for monophagous insect pests. Furthermore, human dietary shifts to fruits and vegetables and smallholder-based farming systems result in highly diverse agricultural ecosystems, which provide resource opportunities for polyphagous insects. Multiple cropping and widespread use of greenhouses provide continuous food and winter habitats for insect pests, greatly extending their geographic range. The current management system consists of early-warning, monitoring, eradication, and spread blocking technologies. This review provides valuable new synthetic information on integrated management practices based mainly on biological control for a number of invasive species. We encourage farmers and extension workers to be more involved in training and further research for novel protection methods that takes into consideration end users' needs.


Asunto(s)
Agricultura/métodos , Control de Insectos/métodos , Insectos , Especies Introducidas , Control Biológico de Vectores/métodos , Animales , China
7.
PLoS One ; 8(11): e82003, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312394

RESUMEN

Understanding the dynamics of potential inter- and intraspecific competition in parasitoid communities is crucial in the screening of efficient parasitoid species and for utilization of the best parasitoid species combinations. In this respect, the host-parasitoid systems, Bemisia tabaci and two parasitoids, Eretmocerus hayati (exotic) and Encarsia sophia (existing) were studied under laboratory conditions to investigate whether interference competition between the exotic and existing species occurs as well as the influence of potential interference competition on the suppression of the host B. tabaci. Studies on interspecific-, intraspecific- and self-interference competition in two parasitoid species were conducted under both rich and limited host resource conditions. Results showed that (1) both parasitoid species negatively affect the progeny production of the other under both rich and limited host resource conditions; (2) both parasitoid species interfered intraspecifically on conspecific parasitized hosts when the available hosts are scarce and; 3) the mortality of B. tabaci induced by parasitoids via parasitism, host-feeding or both parasitism and host-feeding together varied among treatments under different host resource conditions, but showed promise for optimizing control strategies. As a result of our current findings, we suggest a need to investigate the interactions between the two parasitoids on continuous generations.


Asunto(s)
Conducta Animal , Avispas/fisiología , Animales , Especificidad de la Especie
8.
PLoS One ; 7(7): e41189, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22815964

RESUMEN

Destructive host-feeding is common in hymenopteran parasitoids. Such feeding may be restricted to host stages not preferred for oviposition. However, whether this is a fixed strategy or can vary according to resource levels or parasitoid needs is less clear. We tested the trade-off between host feeding and oviposition on two whitefly parasitoids under varying host densities. Females of two aphelinid parasitoids, Eretmocerus hayati and Encarsia sophia were exposed to nine different densities of their whitefly host, Bemisia tabaci, in single-instar tests to identify their functional response. Mixed-instar host choice tests were also conducted by exposing whiteflies at four densities to the parasitoids. We hypothesized that the parasitoid females can detect different host densities, and decide on oviposition vs. host-feeding accordingly. The results showed that both Er. hayati and En. sophia females tended to increase both oviposition and host-feeding with increased host density within a certain range. Oviposition reached a plateau at lower host density than host-feeding in Er. hayati, while En. sophia reached its oviposition plateau at higher densities. At low densities, Er. hayati parasitized most on first and second (the optimal ones), and fed most on third nymphal instars (the suboptimal one) of the whitefly host as theory predicts, while at high densities, both parasitism and host-feeding occurred on first and second instars which are preferred for oviposition. En. sophia parasitized most on third and fourth (the optimal ones), while fed on first instars (the suboptimal one) at low densities, and utilized third and fourth instars for both at high densities. In conclusion, oviposition vs. host-feeding strategy of parasitoid females was found to vary at different host densities. The balance between reserving optimal hosts for oviposition or using them for host-feeding depended on parasitoid life history and the availability of host resources.


Asunto(s)
Hemípteros/fisiología , Himenópteros/fisiología , Oviposición/fisiología , Avispas/fisiología , Animales , Femenino , Interacciones Huésped-Parásitos , Larva/fisiología , Modelos Biológicos , Modelos Estadísticos , Ninfa/fisiología , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...