Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 15(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37111188

RESUMEN

Cordyceps cicadae, a medicinal fungus that is abundant in bioactive compounds such as N6-(2-hydroxyethyl)-adenosine (HEA) and polysaccharides, possesses remarkable anti-inflammatory, antioxidant, and nerve damage recovery properties. Deep ocean water (DOW) contains minerals that can be absorbed and transformed into organic forms by fungi fermentation. Recent studies have shown that culturing C. cicadae in DOW can enhance its therapeutic benefits by increasing the levels of bioactive compounds and minerals' bioavailibility. In this study, we investigated the effects of DOW-cultured C. cicadae (DCC) on brain damage and memory impairment induced by D-galactose in rats. Our results indicate that DCC and its metabolite HEA can improve memory ability and exhibit potent antioxidant activity and free radical scavenging in D-galactose-induced aging rats (p < 0.05). Additionally, DCC can mitigate the expression of inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), thereby preventing brain aging. Furthermore, DCC showed a significant decrease in the expression of the aging-related proteins glial fibrillary acidic protein (GFAP) and presenilin 1 (PS1). By reducing brain oxidation and aging-related factors, DOW-cultured C. cicadae demonstrate enhanced anti-inflammatory, antioxidant, and neuroprotective effects, making it a promising therapeutic agent for preventing and treating age-related brain damage and cognitive impairment.


Asunto(s)
Antioxidantes , Cordyceps , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Galactosa/metabolismo , Agua/metabolismo , Cordyceps/metabolismo , Estrés Oxidativo , Minerales/metabolismo , Envejecimiento , Antiinflamatorios/farmacología , Océanos y Mares , Factores de Riesgo
2.
Dalton Trans ; 51(20): 7907-7917, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35535974

RESUMEN

The reasonable design of binuclear or multinuclear metal complexes has demonstrated their potential advantages in the anticancer field. Herein, three heterobimetallic Ir(III)-Re(I) complexes, [Ir(C^N)2LRe(CO)3DIP](PF6)2 (C^N = 2-phenylpyridine (ppy, in IrRe-1), 2-(2-thienyl)pyridine (thpy, in IrRe-2) and 2-(2,4-difluorophenyl)pyridine (dfppy, in IrRe-3); L = pyridylimidazo[4,5-f][1,10]phenanthroline; DIP = 4,7-diphenyl-1,10-phenanthroline), were designed and synthesized. The heterobimetallic IrRe-1-3 complexes show pH-sensitive emission properties, which can be used for specific imaging of lysosomes. Additionally, IrRe-1-3 display higher cytotoxicity against tested tumor cell lines than the clinical chemotherapeutic drug cisplatin. Further mechanisms indicate that IrRe-1-3 can induce apoptosis and autophagy, increase intracellular reactive oxygen species (ROS), depolarize the mitochondrial membrane (MMP), block the cell cycle at the G0/G1 phase and inhibit cell migration. To the best of our knowledge, this is the first example of the synthesis of heterobimetallic Ir(III)-Re(I) complexes with superior anticancer activities and evaluation of their anticancer mechanisms.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Apoptosis , Línea Celular Tumoral , Iridio/farmacología , Piridinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...