Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 129, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740763

RESUMEN

The safety and efficacy of COVID-19 vaccines in the elderly, a high-risk group for severe COVID-19 infection, have not been fully understood. To clarify these issues, this prospective study followed up 157 elderly and 73 young participants for 16 months and compared the safety, immunogenicity, and efficacy of two doses of the inactivated vaccine BBIBP-CorV followed by a booster dose of the recombinant protein vaccine ZF2001. The results showed that this vaccination protocol was safe and tolerable in the elderly. After administering two doses of the BBIBP-CorV, the positivity rates and titers of neutralizing and anti-RBD antibodies in the elderly were significantly lower than those in the young individuals. After the ZF2001 booster dose, the antibody-positive rates in the elderly were comparable to those in the young; however, the antibody titers remained lower. Gender, age, and underlying diseases were independently associated with vaccine immunogenicity in elderly individuals. The pseudovirus neutralization assay showed that, compared with those after receiving two doses of BBIBP-CorV priming, some participants obtained immunological protection against BA.5 and BF.7 after receiving the ZF2001 booster. Breakthrough infection symptoms last longer in the infected elderly and pre-infection antibody titers were negatively associated with the severity of post-infection symptoms. The antibody levels in the elderly increased significantly after breakthrough infection but were still lower than those in the young. Our data suggest that multiple booster vaccinations at short intervals to maintain high antibody levels may be an effective strategy for protecting the elderly against COVID-19.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Vacunas de Productos Inactivados , Humanos , COVID-19/prevención & control , COVID-19/inmunología , Femenino , Masculino , Anciano , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/administración & dosificación , SARS-CoV-2/inmunología , Estudios Prospectivos , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anciano de 80 o más Años , Adulto , Vacunación , Estudios Longitudinales , Persona de Mediana Edad , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/administración & dosificación , Inmunogenicidad Vacunal/inmunología , Inmunización Secundaria
2.
Materials (Basel) ; 17(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38730947

RESUMEN

This study investigates the potential of the plate-shaped Zn-22 wt.% Al (Zn-22Al) alloy as an innovative energy dissipation material for seismic damping devices, since plate-shaped material is more suitable to fabricate large-scale devices for building structures. The research begins with the synthesis of Zn-22Al alloy, given its unavailability in the commercial market. Monotonic tensile tests and low-cycle fatigue tests are performed to analyze material properties and fatigue performance of plate-shaped specimens. Monotonic tensile curves and cyclic stress-strain curves, along with SEM micrographs for microstructure and fracture surface analysis, are acquired. The combined cyclic hardening material model is calibrated to facilitate finite element analysis. Experimental results reveal exceptional ductility in Zn-22Al alloy, achieving a fracture strain of 200.37% (1.11 fracture strain). Fatigue life ranges from 1126 to 189 cycles with increasing strain amplitude (±0.8% to ±2.5%), surpassing mild steel by at least 6 times. The cyclic strain-life relationships align well with the Basquin-Coffin-Manson relationship. The combined kinematic/isotropic hardening model in ABAQUS accurately predicts the hysteretic behavior of the material, showcasing the promising potential of Zn-22Al alloy for seismic damping applications.

3.
Phys Chem Chem Phys ; 26(15): 11570-11581, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38533820

RESUMEN

The capture and separation of CF4 from CF4/N2 mixture gas is a crucial issue in the electronics industry, as CF4 is a commonly used etching gas and the ratio of CF4 to N2 directly affects process efficiency. Utilizing high-throughput computational screening techniques and grand canonical Monte Carlo (GCMC) simulations, we comprehensively screened and assessed 247 types of pure silicon zeolite materials to determine their adsorption and separation performance for CF4/N2 mixtures. Based on screening, the relationships between the structural parameters and adsorption and separation properties were meticulously investigated. Four indicators including adsorption selectivity, working capacity, adsorbent performance score (APS), and regenerability (R%) were used to evaluate the performance of adsorbents. Based on the evaluation, we selected the top three best-performing zeolite structures for vacuum swing adsorption (LEV, AWW and ESV) and pressure swing adsorption (AVL, ZON, and ERI) processes respectively. Also, we studied the preferable adsorption sites of CF4 and N2 in the selected zeolite structures through centroid density distributions at the molecule level. We expect the study may provide some valuable guidance for subsequent experimental investigations on adsorption and separation of CF4/N2.

5.
J Med Case Rep ; 18(1): 134, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38439039

RESUMEN

BACKGROUND: This case report documents a case of malignant pheochromocytoma manifested as vision changes with lung metastasis and recurrence. CASE PRESENTATION: A 10-year-old Han Chinese girl presented with vision changes and was eventually diagnosed with pheochromocytoma by contrast-enhanced computed tomography, urine vanillylmandelic acid. After medication for hypertension and surgery, clinical symptoms disappeared. Malignant pheochromocytoma with lung metastasis was confirmed histologically using the Pheochromocytoma of the Adrenal Gland Scaled Score scoring system and genetically with succinate dehydrogenase complex iron sulfur subunit B mutation, and 3 months later, unplanned surgery was performed because of the high risks and signs of recurrence. She is asymptomatic as of the writing of this case report. Our patient's case highlights the importance of considering a diagnosis of malignant pheochromocytoma, and long-term follow-up for possible recurrence. CONCLUSION: Although there are well-recognized classic clinical manifestations associated with pheochromocytoma, atypical presentation, such as vision changes in children, should be considered. In addition, malignant pheochromocytoma children with a high Pheochromocytoma of the Adrenal Gland Scaled Score and succinate dehydrogenase complex iron sulfur subunit B mutation require a long-term follow-up or even unplanned surgery because of the higher risk of recurrence.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Neoplasias Pulmonares , Feocromocitoma , Femenino , Humanos , Niño , Feocromocitoma/diagnóstico , Feocromocitoma/cirugía , Succinato Deshidrogenasa/genética , Azufre , Hierro
6.
Hum Gene Ther ; 35(5-6): 177-191, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38386514

RESUMEN

Oncolytic viruses (OVs) are appealing anti-tumor agents. But it is limited in its effectiveness. In this study, we used combination therapy with immune checkpoint inhibitor to enhance the antitumor efficacy of OVs. Using reverse genetics technology, we rescued an oncolytic influenza virus with the name delNS1-GM-CSF from the virus. After identifying the hemagglutination and 50% tissue culture infectivedose (TCID50) of delNS1-GM-CSF, it was purified, and the viral morphology was observed under electron microscopy. Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) was used to identify the level of GM-CSF expression in delNS1-GM-CSF, and the GM-CSF expression level was determined after infection with delNS1-GM-CSF by enzyme linked immunosorbent assay (ELISA). To study the tumor-killing effect of delNS1-GM-CSF, we utilized the hepatocellular carcinoma (HCC) tumor-bearing mouse model. To examine signaling pathways, we performed transcriptome sequencing on mouse tumor tissue and applied western blotting to confirm the results. Changes in T-cell infiltration in HCC tumors following treatment were analyzed using flow cytometry and immunohistochemistry. DelNS1-GM-CSF can target and kill HCCs without damaging normal hepatocytes. DelNS1-GM-CSF combined with programmed cell death 1 blockade therapy enhanced anti-tumor effects and significantly improved mouse survival. Further, we found that combination therapy had an antitumor impact via the janus kinase-signal transducer and activator of transcription (JAK2-STAT3) pathway as well as activated CD4+ and CD8+T cells. Interestingly, combined therapy also showed promising efficacy in distant tumors. DelNS1-GM-CSF is well targeted. Mechanistic investigation revealed that it functions through the JAK2-STAT3 pathway. Combination immunotherapies expected to be a novel strategy for HCC immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Gripe Humana , Neoplasias Hepáticas , Viroterapia Oncolítica , Virus Oncolíticos , Ratones , Animales , Humanos , Virus Oncolíticos/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Inmunoterapia/métodos , Apoptosis , Línea Celular Tumoral , Viroterapia Oncolítica/métodos
7.
Int Immunopharmacol ; 129: 111628, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38320351

RESUMEN

BACKGROUND: Liver cancer, particularly hepatocellular carcinoma (HCC), is characterized by a high mortality rate, attributed primarily to the establishment of an immunosuppressive microenvironment. Within this context, we aimed to elucidate the pivotal role of eukaryotic elongation factor 2 kinase (eEF2K) in orchestrating the infiltration and activation of natural killer (NK) cells within the HCC tumor microenvironment. By shedding light on the immunomodulatory mechanisms at play, our findings should clarify HCC pathogenesis and help identify potential therapeutic intervention venues. METHODS: We performed a comprehensive bioinformatics analysis to determine the functions of eEF2K in the context of HCC. We initially used paired tumor and adjacent normal tissue samples from patients with HCC to measure eEF2K expression and its correlation with prognosis. Subsequently, we enrolled a cohort of patients with HCC undergoing immunotherapy to examine the ability of eEF2K to predict treatment efficacy. To delve deeper into the mechanistic aspects, we established an eEF2K-knockout cell line using CRISPR/Cas9 gene editing. This step was crucial for verifying activation of the cGAS-STING pathway and the subsequent secretion of cytokines. To further elucidate the role of eEF2K in NK cell function, we applied siRNA-based techniques to effectively suppress eEF2K expression in vitro. For in vivo validation, we developed a tumor-bearing mouse model that enabled us to compare the infiltration and activation of NK cells within the tumor microenvironment following various treatment strategies. RESULTS: We detected elevated eEF2K expression within HCC tissues, and this was correlated with an unfavorable prognosis (30.84 vs. 20.99 months, P = 0.033). In addition, co-culturing eEF2K-knockout HepG2 cells with dendritic cells led to activation of the cGAS-STING pathway and a subsequent increase in the secretion of IL-2 and CXCL9. Moreover, inhibiting eEF2K resulted in notable NK cell proliferation along with apoptosis reduction. Remarkably, after combining NH125 and PD-1 treatments, we found a significant increase in NK cell infiltration within HCC tumors in our murine model. Our flow cytometry analysis revealed reduced NKG2A expression and elevated NKG2D expression and secretion of granzyme B, TNF-α, and IFN-γ in NK cells. Immunohistochemical examination confirmed no evidence of damage to vital organs in the mice treated with the combination therapy. Additionally, we noted higher levels of glutathione peroxidase and lipid peroxidation in the peripheral blood serum of the treated mice. CONCLUSION: Targeted eEF2K blockade may result in cGAS-STING pathway activation, leading to enhanced infiltration and activity of NK cells within HCC tumors. The synergistic effect achieved by combining an eEF2K inhibitor with PD-1 antibody therapy represents a novel and promising approach for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Células Asesinas Naturales , Neoplasias Hepáticas/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral
8.
J Agric Food Chem ; 72(8): 4207-4216, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38354706

RESUMEN

The transglutaminase (TGase) from Streptomyces mobaraensis is widely used to improve the texture of protein-based foods. However, wild-type TGase is not heat-resistant, which is unfavorable for its application. In this study, we successfully constructed a S. mobaraensis strain that can efficiently produce TGm2, a thermostable mutant of S. mobaraensis TGase. First, S. mobaraensis DSM40587 was subjected to atmospheric room temperature plasma mutagenesis, generating mutant smY2022 with a 12.2-fold increase in TGase activity. Then, based on the double-crossover recombination, we replaced the coding sequence of the TGase with that of TGm2 in smY2022, obtaining the strain smY2022-TGm2. The extracellular TGase activity of smY2022-TGm2 reached 61.7 U/mL, 147% higher than that of smY2022. Finally, the catalytic properties of TGm2 were characterized. The half-life time at 60 °C and specific activity of TGm2 reached 64 min and 71.15 U/mg, 35.6- and 2.9-fold higher than those of the wild-type TGase, respectively. As indicated by SDS-PAGE analysis, TGm2 exhibited demonstrably better protein cross-linking ability than the wild-type TGase at 70 °C, although both enzymes shared a similar ability at 40 °C. With improved enzyme production and thermal stability, smY2022-TGm2 could be a competitive strain for the industrial production of transglutaminase.


Asunto(s)
Streptomyces , Transglutaminasas , Transglutaminasas/genética , Transglutaminasas/metabolismo , Streptomyces/metabolismo , Proteínas Bacterianas/metabolismo
9.
J Pediatr (Rio J) ; 100(3): 318-326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38182126

RESUMEN

OBJECTIVE: Reliably prediction models for coronary artery abnormalities (CAA) in children aged >5 years with Kawasaki disease (KD) are still lacking. This study aimed to develop a nomogram model for predicting CAA at 4 to 8 weeks of illness in children with KD older than 5 years. METHODS: A total of 644 eligible children were randomly assigned to a training cohort (n = 450) and a validation cohort (n = 194). The least absolute shrinkage and selection operator (LASSO) analysis was used for optimal predictors selection, and multivariate logistic regression was used to develop a nomogram model based on the selected predictors. Area under the receiver operating characteristic curve (AUC), calibration curves, Hosmer-Lemeshow test, Brier score, and decision curve analysis (DCA) were used to assess model performance. RESULTS: Neutrophil to lymphocyte ratio, intravenous immunoglobulin resistance, and maximum baseline z-score ≥ 2.5 were identified by LASSO as significant predictors. The model incorporating these variables showed good discrimination and calibration capacities in both training and validation cohorts. The AUC of the training cohort and validation cohort were 0.854 and 0.850, respectively. The DCA confirmed the clinical usefulness of the nomogram model. CONCLUSIONS: A novel nomogram model was established to accurately assess the risk of CAA at 4-8 weeks of onset among KD children older than 5 years, which may aid clinical decision-making.


Asunto(s)
Síndrome Mucocutáneo Linfonodular , Nomogramas , Humanos , Síndrome Mucocutáneo Linfonodular/complicaciones , Síndrome Mucocutáneo Linfonodular/diagnóstico , Masculino , Femenino , Niño , Preescolar , Anomalías de los Vasos Coronarios , Curva ROC , Modelos Logísticos , Medición de Riesgo/métodos
10.
Ital J Pediatr ; 50(1): 16, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273388

RESUMEN

BACKGROUND: Kawasaki disease (KD) is an acute systemic vasculitis of unknown etiology that predominantly affects children, and no specific diagnostic biomarkers for KD are available. Platelet-derived growth factor CC (PDGF-CC) is a peptide with angiogenic properties that has been amply demonstrated to play a critical role in the cardiovascular system. This study aimed to investigate the serum expression of PDGF-CC in children with KD and to evaluate the ability of PDGF-CC to diagnose KD. METHODS: A total of 96 subjects, including 59 KD patients, 17 febrile controls (FC), and 20 healthy controls (HC), were enrolled. Serum levels of PDGF-CC were measured via enzyme-linked immunosorbent assay. The associations between PDGF-CC and clinical laboratory parameters were investigated by correlation analysis. The diagnostic performance was assessed by receiver operating characteristic (ROC) curve analysis. RESULTS: Serum PDGF-CC levels in the KD group were significantly higher than in the FC and HC groups. Serum PDGF-CC levels in the KD group were positively correlated with white blood cell counts, percentage of neutrophils, IL-2, IL-12p70, TNF-α, and IL-1ß levels, and negatively correlated with the percentage of lymphocytes. In the analysis of ROC curves, the area under the curve was 0.796 (95% confidence interval 0.688-0.880; P < 0.0001) for PDGF-CC and increased to 0.900 (95% confidence interval 0.808-0.957; P < 0.0001) in combination with white blood cell counts and C-reactive protein. CONCLUSIONS: PDGF-CC is a potential biomarker for KD diagnosis, and the combination with white blood cell counts and C-reactive protein can further improve diagnostic performance.


Asunto(s)
Linfocinas , Síndrome Mucocutáneo Linfonodular , Niño , Humanos , Síndrome Mucocutáneo Linfonodular/diagnóstico , Proteína C-Reactiva/análisis , Biomarcadores , Factor de Crecimiento Derivado de Plaquetas , Fiebre
11.
Sci Rep ; 14(1): 329, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172565

RESUMEN

The expression level of SLC35A3 is associated with the prognosis of many cancers, but its role in colorectal cancer (CRC) is unclear. The purpose of our study was to elucidate the role of SLC35A3 in CRC. The expression levels of SLC35A3 in CRC were evaluated through tumor immune resource assessment (TIMER), The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), Human Protein Atlas (HPA), qRT-PCR, and immunohistochemical evaluation. TCGA, GEO, and ICGC databases were used to analyze the diagnostic and prognostic value of SLC35A3 in CRC. A overall survival (OS) model was constructed and validated based on the expression level of SLC35A3 and multivariable analysis results. The cBioPortal tool was used to analyze SLC35A3 mutation in CRC. The UALCAN tool was used to analyze the promoter methylation level of SLC35A3 in colorectal cancer. In addition, the role of SLC35A3 in CRC was determined through GO analysis, KEGG analysis, gene set enrichment analysis (GSEA), immune infiltration analysis, and immune checkpoint correlation analysis. In vitro experiments validated the function of SLC35A3 in colorectal cancer cells. Compared with adjacent normal tissues and colonic epithelial cells, the expression of SLC35A3 was decreased in CRC tissues and CRC cell lines. Low expression of SLC35A3 was associated with N stage, pathological stage, and lymphatic infiltration, and it was unfavorable for OS, disease-specific survival (DSS), recurrence-free survival (RFS), and post-progression survival (PPS). According to the Receiver Operating Characteristic (ROC) analysis, SLC35A3 is a potential important diagnostic biomarker for CRC patients. The nomograph based on the expression level of SLC35A3 showed a better predictive model for OS than single prognostic factors and TNM staging. SLC35A3 has multiple types of mutations in CRC, and its promoter methylation level is significantly decreased. GO and KEGG analysis indicated that SLC35A3 may be involved in transmembrane transport protein activity, cell communication, and interaction with neurotransmitter receptors. GSEA revealed that SLC35A3 may be involved in energy metabolism, DNA repair, and cancer pathways. In addition, SLC35A3 was closely related to immune cell infiltration and immune checkpoint expression. Immunohistochemistry confirmed the positive correlation between SLC35A3 and helper T cell infiltration. In vitro experiments showed that overexpression of SLC35A3 inhibited the proliferation and invasion capability of colorectal cancer cells and promoted apoptosis. The results of this study indicate that decreased expression of SLC35A3 is closely associated with poor prognosis and immune cell infiltration in colorectal cancer, and it can serve as a promising independent prognostic biomarker and potential therapeutic target.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Humanos , Biomarcadores , Comunicación Celular , Línea Celular , Neoplasias Colorrectales/genética , Pronóstico
12.
J Hepatocell Carcinoma ; 11: 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38223555

RESUMEN

Background: Oncolytic virus (OV) therapy has emerged as a promising novel form of immunotherapy. Moreover, an increasing number of studies have shown that the therapeutic efficacy of OV can be further improved by arming OVs with immune-stimulating molecules. Methods: In this study, we used reverse genetics to produce a novel influenza A virus, termed IAV-OX40L, which contained the immune-stimulating molecule OX40L gene in the influenza virus nonstructural (NS1) protein gene. The oncolytic effect of IAV-OX40L was explored on hepatocellular carcinoma (HCC)HCC cells in vitro and in vivo. Results: Hemagglutination titers of the IAV-OX40L virus were stably 27-28 in specific-pathogen-free chicken embryos. The morphology and size distribution of IAV-OX40L are similar to those of the wild-type influenza. Expression of OX40L protein was confirmed by Western blot and immunofluorescence. MTS assays showed that the cytotoxicity of IAV-OX40L was higher in HCC cells (HepG2 and Huh7) than in normal liver cells (MIHA) in a time- and dose-dependent manner in vitro. We found that intratumoral injection of IAV-OX40L reduced tumor growth and increased the survival rate of mice compared with PR8-treated controls in vivo. In addition, the pathological results showed that IAV-OX40L selectively destroyed tumor tissues without harming liver and lung tissues. CD4+ and CD8+ T cells of the IAV-OX40L group were significantly increased in the splenic lymphocytes of mice. Further validation confirmed that IAV-OX40L enhanced the immune response mainly by activating Th1-dominant immune cells, releasing interferon-γ and interleukin-2. Conclusion: Taken together, our findings demonstrate the novel chimeric influenza OV could provide a potential therapeutic strategy for combating HCC and improve the effectiveness of virotherapy for cancer therapy.

14.
J Colloid Interface Sci ; 659: 974-983, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219315

RESUMEN

Yolk-shell-structured transition metal sulfides (TMSs)/carbon nanocomposites are highly desirable in advanced energy storage system, such as sodium-ion batteries (SIBs) and supercapacitors (SCs). Nevertheless, practical applications are still prevented by the loose attachment of TMSs with carbon caused by conversion stress, the aggregation of TMSs nanoparticles and the sluggish ion transport caused by high crystallinity of carbon. Here, the disperse hollow Co9S8 nanoparticles encapsulated into N,S-codoped carbon nanotubes (CNTs) with poor crystallinity through CoNC bond was synthesized (CS-NSCNT) to overcome the above obstacles. The designed CS-NSCNT can provide the short diffusion path and prevent the huge volume expansion of conversion reaction. Moreover, the established CoNC bond endows the strong interaction and regulates the electronic structure thus promote the stability and rate performance effectively. The CS-NSCNT SCs's electrode delivers a high specific capacitance of 1150 F g-1 at 1 A g-1, with a high cycling life stability and rate performance. For SIBs, the CS-NSCNT cathode demonstrates an initial reversible capacity of 475 mAh g-1 at 0.1 A g-1 and an excellent rate performance with a capacity retention of 53 % at 10 A g-1. This work may satisfy the long-stability, high-capacitance/capacity, high-power/energy density application requirements of future applications.

15.
Hum Gene Ther ; 35(1-2): 48-58, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37646399

RESUMEN

Oncolytic viruses are able to lyse tumor cells selectively in the liver without killing normal hepatocytes, in addition to activating the immune response. Oncolytic virus therapy is expected to revolutionize the treatment of liver cancer, including hepatocellular carcinoma (HCC), one of the most frequent and fatal malignancies. In this study, reverse genetics techniques were exploited to load NA fragments of the A/PuertoRico/8/34 virus (PR8) with GV1001 peptides derived from human telomerase reverse transcriptase. An in vitro assessment of the therapeutic effect of the recombinant oncolytic virus was followed by an in vivo study in mice with HCC. The recombinant virus was verified by sequencing of the recombinant viral gene sequence, and viral virulence was detected by hemagglutination assays and based on the 50% tissue culture infectious dose (TCID50). The morphological structure of the virus was observed by electron microscopy, and GV1001 peptide was localized by cellular immunofluorescence. The selective cytotoxicity of the recombinant oncolytic virus in vitro was demonstrated in cultured HCC cells and normal hepatocytes, as only the tumor cells were killed; the normal cells were not significantly altered. Consistent with the in vitro results, the recombinant oncolytic influenza virus significantly inhibited liver tumor growth in mice in vivo, in addition to inducing an antitumor immune response, including an increase in the number of CD4+ and CD8+ T lymphocytes and, in turn, improving survival. Our results suggest that oncolytic influenza virus carrying GV1001 is a promising immunotherapy in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Viroterapia Oncolítica , Virus Oncolíticos , Orthomyxoviridae , Humanos , Ratones , Animales , Virus Oncolíticos/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Viroterapia Oncolítica/métodos , Inmunidad , Línea Celular Tumoral
16.
J Gastroenterol ; 59(2): 119-137, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37925679

RESUMEN

BACKGROUND: Three-dimensional (3D) chromatin architecture frequently altered in cancer. However, its changes during the pathogenesis of hepatocellular carcinoma (HCC) remained elusive. METHODS: Hi-C and RNA-seq were applied to study the 3D chromatin landscapes and gene expression of HCC and ANHT. Hi-C Pro was used to generate genome-wide raw interaction matrices, which were normalized via iterative correction (ICE). Moreover, the chromosomes were divided into different compartments according to the first principal component (E1). Furthermore, topologically associated domains (TADs) were visualized via WashU Epigenome Browser. Furthermore, differential expression analysis of ANHT and HCC was performed using the DESeq2 R package. Additionally, dysregulated genes associated with 3D genome architecture altered were confirmed using TCGA, qRT-PCR, immunohistochemistry (IHC), etc. RESULTS: First, the intrachromosomal interactions of chr1, chr2, chr5, and chr11 were significantly different, and the interchromosomal interactions of chr4-chr10, chr13-chr21, chr15-chr22, and chr16-chr19 are remarkably different between ANHT and HCC, which resulted in the up-regulation of TP53I3 and ZNF738 and the down-regulation of APOC3 and APOA5 in HCC. Second, 49 compartment regions on 18 chromosomes have significantly switched (A-B or B-A) during HCC tumorigenesis, contributing to up-regulation of RAP2A. Finally, a tumor-specific TAD boundary located on chr5: 6271000-6478000 and enhancer hijacking were identified in HCC tissues, potentially associated with the elevated expression of MED10, whose expression were associated with poor prognosis of HCC patients. CONCLUSION: This study demonstrates the crucial role of chromosomal structure variation in HCC oncogenesis and potential novel biomarkers of HCC, laying a foundation for cancer precision medicine development.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Cromatina/genética , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/patología , Cromosomas/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo
18.
Cell Genom ; 3(12): 100446, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38116121

RESUMEN

Capturing and depicting the multimodal tissue information of tissues at the spatial scale remains a significant challenge owing to technical limitations in single-cell multi-omics and spatial transcriptomics sequencing. Here, we developed a computational method called SpaTrio that can build spatial multi-omics data by integrating these two datasets through probabilistic alignment and enabling further analysis of gene regulation and cellular interactions. We benchmarked SpaTrio using simulation datasets and demonstrated its accuracy and robustness. Next, we evaluated SpaTrio on biological datasets and showed that it could detect topological patterns of cells and modalities. SpaTrio has also been applied to multiple sets of actual data to uncover spatially multimodal heterogeneity, understand the spatiotemporal regulation of gene expression, and resolve multimodal communication among cells. Our data demonstrated that SpaTrio could accurately map single cells and reconstruct the spatial distribution of various biomolecules, providing valuable multimodal insights into spatial biology.

19.
BMJ Open Respir Res ; 10(1)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37940355

RESUMEN

INTRODUCTION: Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease with limited therapeutic options and high lethality, related to alveolar type II epithelial (ATII) cell dysregulation, the abnormal repair of alveolar epithelial cells and activation of fibroblasts promote the development of pulmonary fibrosis. Fatty acid binding protein 1 (FABP1) was significantly downregulated in the fibrotic state by proteomics screening in our previous date, and the ATII cell dysregulation can be mediated by FABP1 via regulating fatty acid metabolism and intracellular transport. The aim of this study was to evaluate the role and potential mechanism of FABP1 in the development of pulmonary fibrosis. METHODS: Proteomics screening was used to detect changes of the protein profiles in two different types (induced by bleomycin and silica, respectively) of pulmonary fibrosis models. The localisation of FABP1 in mouse lung was detected by Immunofluorescence and immunohistochemistry. Experimental methods such as lung pathology, micro-CT, western blotting, small animal imaging in vivo, EdU, etc were used to verify the role of FABP1 in pulmonary fibrosis. RESULTS: The expression of FABP1 in the mouse lung was significantly reduced in the model of pulmonary fibrosis from our proteomic analysis and immunological methods, the double immunofluorescence staining showed that FABP1 was mainly localised in type II alveolar epithelial cells. Additionally, the expression of FABP1 was negatively correlated with the progression of pulmonary fibrosis. Further in vivo and in vitro experiments showed that overexpression of FABP1 alleviated pulmonary fibrosis by protecting alveolar epithelium from injury and promoting cell survival. CONCLUSION: Our findings provide a proof-of-principle that FABP1 may represent an effective treatment for pulmonary fibrosis by regulating alveolar epithelial regeneration, which may be associated with the fatty acid metabolism in ATII cells.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteómica , Ratones , Humanos , Animales , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Fibrosis Pulmonar Idiopática/patología , Regeneración , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología
20.
Pediatr Infect Dis J ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37922481

RESUMEN

BACKGROUND: A subset of patients with Kawasaki disease (KD) will suffer recurrence. However, there is still a lack of accurate prediction models for coronary artery lesions (CAL) in recurrent KD patients. It is necessary to establish a new nomogram model for predicting CAL in patients with recurrent KD. METHODS: Data from patients with recurrent KD between 2015 and 2021 were retrospectively reviewed. After splitting the patients into training and validation cohorts, the least absolute shrinkage and selection operator was used to select the predictors of CAL and multivariate logistic regression was used to construct a nomogram based on the selected predictors. The application of area under the receiver operating characteristic curve (AUC), calibration curves, Hosmer-Lemeshow test, Brier score and decision curve analysis were used to assess the model performance. RESULTS: A total of 159 recurrent KD patients were enrolled, 66 (41.5%) of whom had CAL. Hemoglobin levels, CAL at the first episode, and intravenous immunoglobulin resistance at recurrence were identified by the least absolute shrinkage and selection operator regression analysis as significant predictors. The model incorporating these predictors showed good discrimination (AUC, 0.777) and calibration capacities (Hosmer-Lemeshow P value, 0.418; Brier score, 0.190) in the training cohort. Application of the model to the validation cohort yielded an AUC of 0.741, a Hosmer-Lemeshow P value of 0.623 and a Brier score of 0.190. The decision curve analysis demonstrated that the nomogram model was clinically useful. CONCLUSIONS: The proposed nomogram model could help clinicians assess the risk of CAL in patients with recurrent KD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...