Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 12(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36551033

RESUMEN

H. pylori is responsible for several stomach-related diseases including gastric cancer. The main virulence factor responsible for its establishment in human gastric cells is known as CagA. Therefore, in this study, we have fabricated a highly sensitive MIP-based electrochemical biosensor for the detection of CagA. For this, an rGO and gold-coated, screen-printed electrode sensing platform was designed to provide a surface for the immobilization of a CagA-specific, molecularly imprinted polymer; then it was characterized electrochemically. Interestingly, molecular dynamics simulations were studied to optimize the MIP prepolymerization system, resulting in a well-matched, optimized molar ratio within the experiment. A low binding energy upon template removal indicates the capability of MIP to recognize the CagA antigen through a strong binding affinity. Under the optimized electrochemical experimental conditions, the fabricated CagA-MIP/Au/rGO@SPE sensor exhibited high sensitivity (0.275 µA ng-1 mL-1) and a very low limit of detection (0.05 ng mL-1) in a linear range of 0.05-50 ng mL-1. The influence of other possible interferents in analytical response has also been observed with the successful determination of the CagA antigen.


Asunto(s)
Técnicas Biosensibles , Helicobacter pylori , Impresión Molecular , Humanos , Técnicas Electroquímicas/métodos , Impresión Molecular/métodos , Técnicas Biosensibles/métodos , Electrodos , Límite de Detección
2.
Adv Sci (Weinh) ; 9(22): e2201507, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35657078

RESUMEN

Smart fabrics that can harvest ambient energy and provide diverse sensing functionality via triboelectric effects have evoked great interest for next-generation healthcare electronics. Herein, a novel borophene/ecoflex nanocomposite is developed as a promising triboelectric material with tailorability, durability, mechanical stability, and flexibility. The addition of borophene nanosheets enables the borophene/ecoflex nanocomposite to exhibit tunable surface triboelectricity investigated by Kelvin probe force microscopy. The borophene/ecoflex nanocomposite is further fabricated into a fabric-based triboelectric nanogenerator (B-TENG) for mechanical energy harvesting, medical assistive system, and wound healing applications. The durability of B-TENG provides consistent output performance even after severe deformation treatments, such as folding, stretching, twisting, and washing procedures. Moreover, the B-TENG is integrated into a smart keyboard configuration combined with a robotic system to perform an upper-limb medical assistive interface. Furthermore, the B-TENG is also applied as an active gait phase sensing system for instantaneous lower-limb gait phase visualization. Most importantly, the B-TENG can be regarded as a self-powered in vitro electrical stimulation device to conduct continuous wound monitoring and therapy. The as-designed B-TENG not only demonstrates great potential for multifunctional self-powered healthcare sensors, but also for the promising advancements toward wearable medical assistive and therapeutic systems.


Asunto(s)
Nanocompuestos , Nanotecnología , Electricidad , Nanotecnología/métodos , Textiles , Cicatrización de Heridas
3.
Adv Sci (Weinh) ; 9(18): e2105974, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35445556

RESUMEN

Single crystal metal-free halide perovskites have received great attention in recent years owing to their excellent piezoelectric and ferroelectric properties. However, the nanotoxicity and piezoelectricity within the nanoscale of such materials have yet been reported for the demonstration of practical applications. In this work, the observation of intrinsic piezoelectricity in metal-free perovskite (MDABCO-NH4 I3 ) films using piezoresponse force microscopy (PFM) is reported. A cytotoxicity test is also performed on MDABCO-NH4 I3 to evaluate its low-toxic nature. The as-synthesized MDABCO-NH4 I3 is further integrated into a piezoelectric nanogenerator (PENG). The MDABCO-NH4 I3 -based PENG (MN-PENG) exhibits optimal output voltage and current of 15.9 V and 54.5 nA, respectively. In addition, the MN-PENG can serve as a self-powered strain sensor for human-machine interface applications or be adopted in in vitro electrical stimulation devices. This work demonstrates a path of perovskite-based PENG with high performance, low toxicity, and multifunctionality for future advanced wearable sensors and portable therapeutic systems.


Asunto(s)
Suministros de Energía Eléctrica , Titanio , Compuestos de Calcio , Estimulación Eléctrica , Humanos , Óxidos
4.
Adv Sci (Weinh) ; 9(12): e2104703, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35199947

RESUMEN

Metal-halide perovskites have emerged as versatile materials for various electronic and optoelectronic devices such as diodes, solar cells, photodetectors, and sensors due to their interesting properties of high absorption coefficient in the visible regime, tunable bandgap, and high power conversion efficiency. Recently, metal-free organic perovskites have also emerged as a particular class of perovskites materials for piezoelectric applications. This broadens the chemical variety of perovskite structures with good mechanical adaptability, light-weight, and low-cost processability. Despite these achievements, the fundamental understanding of the underlying phenomenon of piezoelectricity in metal-free perovskites is still lacking. Therefore, this perspective emphasizes the overview of piezoelectric properties of metal-halide, metal-free perovskites, and their recent progress which may encourage material designs to enhance their applicability towards practical applications. Finally, challenges and outlooks of piezoelectric metal-free perovskites are highlighted for their future developments.

5.
Materials (Basel) ; 14(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34443037

RESUMEN

A cobalt oxide (Co3O4)-decorated silicon carbide (SiC) nano-tree array (denoted as Co3O4/SiC NTA) electrode is synthesized, and it is investigated for use in micro-supercapacitor applications. Firstly, the well-standing SiC nanowires (NWs) are prepared by nickel (Ni)-catalyzed chemical vapor deposition (CVD) method, and then the thin layer of Co3O4 and the hierarchical Co3O4 nano-flower-clusters are, respectively, fabricated on the side-walls and the top side of the SiC NWs via electrodeposition. The deposition of Co3O4 on the SiC NWs benefits the charge transfer at the electrode/aqueous electrolyte interface due to its extremely hydrophilic surface characteristic after Co3O4 decoration. Furthermore, the Co3O4/SiC NTA electrode provides a directional charge transport route along the length of SiC nanowires owing to their well-standing architecture. By using the Co3O4/SiC NTA electrode for micro-supercapacitor application, the areal capacitance obtained from cyclic voltammetry measurement reaches 845 mF cm-2 at a 10 mV s-1 scan rate. Finally, the capacitance durability is also evaluated by the cycling test of cyclic voltammetry at a high scan rate of 150 mV s-1 for 2000 cycles, exhibiting excellent stability.

6.
RSC Adv ; 11(33): 20403-20422, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35479927

RESUMEN

The development of minimally invasive and easy-to-use sensor devices is of current interest for ultrasensitive detection and signal recognition of Alzheimer's disease (AD) biomarkers. Over the years, tremendous effort has been made on diagnostic platforms specifically targeting neurological markers for AD in order to replace the conventional, laborious, and invasive sampling-based approaches. However, the sophistication of analytical outcomes, marker inaccessibility, and material validity strongly limit the current strategies towards effectively predicting AD. Recently, with the promising progress in biosensor technology, the realization of a clinically applicable sensing platform has become a potential option to enable early diagnosis of AD and other neurodegenerative diseases. In this review, various types of biosensors, which include electrochemical, fluorescent, plasmonic, photoelectrochemical, and field-effect transistor (FET)-based sensor configurations, with better clinical applicability and analytical performance towards AD are highlighted. Moreover, the feasibility of these sensors to achieve point-of-care (POC) diagnosis is also discussed. Furthermore, by grafting nanoscale materials into biosensor architecture, the remarkable enhancement in durability, functionality, and analytical outcome of sensor devices is presented. Finally, future perspectives on further translational and commercialization pathways of clinically driven biosensor devices for AD are discussed and summarized.

7.
Nanotechnology ; 31(32): 324002, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32453710

RESUMEN

Inorganic perovskite quantum dots (IPQDs) such as cesium lead halide (CsPbX3, X = Cl, Br and I) quantum dots have attracted much attention for developing cadmium-free quantum light-emitting displays (QLEDs) based on outstanding light emission properties including narrow full width at half maximum (FWHM), tunable bandgap and ultrahigh (>90%) photoluminescence quantum yield (PLQY). Nevertheless, their poor stability under ambient conditions, at high temperature or under continuous light irradiation is the main problem for practical applications. In this study, a new method is proposed to effectively stabilize CsPbBr3 IPQDs by synthesizing them with sulfate-functionalized cellulose nanocrystals (CNCs) at room temperature without using traditional quantum dot stabilizers such as oleylamine (OLA) and oleic acid (OA). The as-prepared CsPbBr3 IPQD/CNC hybrid paper-like films are highly stable and the relative photoluminescence (PL) intensity can be maintained at 92% under continuous UV light (306 nm, 15 W) illumination for 130 h, >99% at high temperature (100 °C) for 130 h, and >99% in ambient conditions for 15 d. Additionally, the PLQY and FWHM of IPQD/CNC are 45.69% and 22 nm, respectively. The ultrahigh stability and narrow FWHM characteristics proposed here for IPQD/CNC hybrid films can provide new possibilities for practical applications in the future development of IPQD-related devices.

8.
ACS Nano ; 10(1): 815-21, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26679147

RESUMEN

By employing graphene quantum dots (GQDs) in PEDOT: PSS, we have achieved an efficiency of 13.22% in Si/ PEDOT: PSS hybrid solar cells. The efficiency enhancement is based on concurrent improvement in optical and electrical properties by the photon downconversion process and the improved conductivity of PEDOT: PSS via appropriate incorporation of GQDs. After introducing GQDs into PEDOT: PSS, the short circuit current and the fill factor of rear-contact optimized hybrid cells are increased from 32.11 to 36.26 mA/cm(2) and 62.85% to 63.87%, respectively. The organic-inorganic hybrid solar cell obtained herein holds the promise for developing photon-managing, low-cost, and highly efficient photovoltaic devices.

9.
ACS Nano ; 9(11): 11056-63, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26469374

RESUMEN

Micro total analysis system (µTAS) is one of the important tools for modern analytical sciences. In this paper, we not only propose the concept of integrating the self-powered triboelectric microfluidic nanosensor (TMN) with µTAS, but also demonstrate that the developed system can be used as an in situ tool to quantify the flowing liquid for microfluidics and solution chemistry. The TMN automatically generates electric outputs when the fluid passing through it and the outputs are affected by the solution temperature, polarity, ionic concentration, and fluid flow velocity. The self-powered TMN can detect the flowing water velocity, position, reaction temperature, ethanol, and salt concentrations. We also integrate the TMNs in a µTAS platform to directly characterize the synthesis of Au nanoparticles by a chemical reduction method.

10.
Sci Rep ; 5: 15087, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26455819

RESUMEN

A fully transparent resistive memory (TRRAM) based on Hafnium oxide (HfO2) with excellent transparency, resistive switching capability, and environmental stability is demonstrated. The retention time measured at 85 °C is over 3 × 10(4) sec, and no significant degradation is observed in 130 cycling test. Compared with ZnO TRRAM, HfO2 TRRAM shows reliable performance under harsh conditions, such as high oxygen partial pressure, high moisture (relative humidity = 90% at 85 °C), corrosive agent exposure, and proton irradiation. Moreover, HfO2 TRRAM fabricated in cross-bar array structures manifests the feasibility of future high density memory applications. These findings not only pave the way for future TRRAM design, but also demonstrate the promising applicability of HfO2 TRRAM for harsh environments.

11.
Adv Mater ; 27(25): 3817-24, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25981405

RESUMEN

A flexible triboelectric nanogenerator (FTENG) based on wavy-structured Kapton film and a serpentine electrode on stretchable substrates is presented. The as-fabricated FTENG is capable of harvesting ambient mechanical energy via both compressive and stretching modes. Moreover, the FTENG can be a bendable power source to work on curved surfaces; it can also be adaptively attached onto human skin for monitoring gentle body motions.


Asunto(s)
Actigrafía/instrumentación , Suministros de Energía Eléctrica , Electrodos , Monitoreo Fisiológico/instrumentación , Nanotecnología/instrumentación , Docilidad , Diseño de Equipo , Humanos , Movimiento , Nanocables , Piel
12.
ACS Nano ; 9(5): 4757-65, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25808880

RESUMEN

The self-powered system is a promising concept for wireless networks due to its independent and sustainable operations without an external power source. To realize this idea, the triboelectric nanogenerator (TENG) was recently invented, which can effectively convert ambient mechanical energy into electricity to power up portable electronics. In this work, a self-powered smart window system was realized through integrating an electrochromic device (ECD) with a transparent TENG driven by blowing wind and raindrops. Driven by the sustainable output of the TENG, the optical properties, especially the transmittance of the ECD, display reversible variations due to electrochemical redox reactions. The maximum transmittance change at 695 nm can be reached up to 32.4%, which is comparable to that operated by a conventional electrochemical potentiostat (32.6%). This research is a substantial advancement toward the practical application of nanogenerators and self-powered systems.

13.
Adv Mater ; 27(14): 2340-7, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25727070

RESUMEN

A triboelectric-pyroelectric-piezoelectric hybrid cell, consisting of a triboelectric nanogenerator and a pyroelectric-piezoelectric nanogenerator, is developed for highly efficient mechanical energy harvesting through multiple mechanisms. The excellent performance of the hybrid cell enhances the energy-harvesting efficiency significantly (by 26.2% at 1 kΩ load resistance), and enables self-powered sensing, which will lead to a variety of advanced applications.

14.
ACS Nano ; 9(1): 922-30, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25555045

RESUMEN

In comparison to in-pane sliding friction, rolling friction not only is likely to consume less mechanical energy but also presents high robustness with minimized wearing of materials. In this work, we introduce a highly efficient approach for harvesting mechanical energy based on rolling electrification and electrostatic induction, aiming at improving the energy conversion efficiency and device durability. The rolling triboelectric nanogenerator is composed of multiple steel rods sandwiched by two fluorinated ethylene propylene (FEP) thin films. The rolling motion of the steel rods between the FEP thin films introduces triboelectric charges on both surfaces and leads to the change of potential difference between each pair of electrodes on back of the FEP layer, which drives the electrons to flow in the external load. As power generators, each pair of output terminals works independently and delivers an open-circuit voltage of 425 V, and a short-circuit current density of 5 mA/m(2). The two output terminals can also be integrated to achieve an overall power density of up to 1.6 W/m(2). The impacts of variable structural factors were investigated for optimization of the output performance, and other prototypes based on rolling balls were developed to accommodate different types of mechanical energy sources. Owing to the low frictional coefficient of the rolling motion, an instantaneous energy conversion efficiency of up to 55% was demonstrated and the high durability of the device was confirmed. This work presents a substantial advancement of the triboelectric nanogenerators toward large-scope energy harvesting and self-powered systems.

15.
ACS Nano ; 9(1): 901-7, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25555199

RESUMEN

Discovering renewable and sustainable power sources is indispensable for the development of green electronics and sensor networks. In this paper, we present origami triboelectric nanogenerators (TENGs) using paper as the starting material, with a high degree of flexibility, light weight, low cost, and recyclability. Slinky- and doodlebug-shaped TENGs can be easily fabricated by properly folding printer papers. The as-fabricated TENGs are capable of harvesting ambient mechanical energy from various kinds of human motions, such as stretching, lifting, and twisting. The generated electric outputs have been used to directly light-up commercial LEDs. In addition, the as-fabricated TENGs can also serve as self-powered pressure sensors.

16.
Sci Rep ; 4: 4402, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24638086

RESUMEN

The tolerance/resistance of the electronic devices to extremely harsh environments is of supreme interest. Surface effects and chemical corrosion adversely affect stability and operation uniformity of metal oxide resistive memories. To achieve the surrounding-independent behavior, the surface modification is introduced into the ZnO memristors via incorporating fluorine to replace the oxygen sites. F-Zn bonds is formed to prevent oxygen chemisorption and ZnO dissolution upon corrosive atmospheric exposure, which effectively improves switching characteristics against harmful surroundings. In addition, the fluorine doping stabilizes the cycling endurance and narrows the distribution of switching parameters. The outcomes provide valuable insights for future nonvolatile memory developments in harsh electronics.

17.
Nanoscale Res Lett ; 8(1): 350, 2013 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-23937804

RESUMEN

A hybrid structure (HS) made of one-dimensional ZnO nanorods (NRs) and a two-dimensional synthesized graphene sheet was successfully constructed in this study. The uniform ZnO NRs were obtained by hydrothermal method and grown on a graphene surface that had been transferred to a polyethylene terephthalate substrate. The HS exhibited high transmittance (approximately 75%) over the visible wavelength range, even after cyclic bending with a small radius of curvature. Raman spectroscopy and Hall measurement were carried out to verify the chemical composition and electrical properties of the structure. Stable electrical conductance of the ZnO NR/graphene HS was achieved, and increase in carrier mobility decreased the resistance of the ZnO-with-graphene sheet in comparison with bare ZnO NRs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...