Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biomed ; 4(1): 33, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37840106

RESUMEN

Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.

2.
J Hazard Mater ; 424(Pt B): 127408, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34653857

RESUMEN

Natural organic matter (NOM) can tremendously influence the purification efficiency of the drinking water treatment process. Coagulation was the first and primary process of NOM removal in the drinking water treatment process. The interaction between coagulants and NOM molecules remains unclear. Three typical coagulants (Al13, FeCl3, and AlCl3) were used to investigate the effects on NOM removal. The measurement of NOM was conducted using 15 T Electrospray Ionization coupled Fourier-Transform-Ion Cyclotron Resonance Mass Spectrometry (ESI-FT-ICR MS). The coagulation process altered the mass peak numbers as well as relative intensity of the peaks which were positively correlated with TOC value. The lignin-like compound was the most abundant moiety in raw water. Al-based coagulants remove more unsaturated larger compounds (lower KMD and higher carbon number). Al13 remove the unsaturated hydrocarbons preferably. FeCl3 is more reactive with NOM molecules and removes more fully saturated compounds. These findings revealed the coagulation removal mechanism of NOM with different structural characteristics and advise the practical use of coagulants for various raw water with different NOM characteristics.


Asunto(s)
Purificación del Agua , Lignina , Espectrometría de Masas
4.
J Colloid Interface Sci ; 551: 16-25, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31075630

RESUMEN

Cu(I) doped nano-Fe3O4 were synthesized and loaded on ordered porous carbon materials using a facile co-precipitated. The synthesized catalysts were characterized by XRD, XPS, HRTEM, FESEM-EDX mapping and N2 adsorption-desorption. The results showed that the crystal unit cell of Fe3O4 was enlarged due to the implantation of small amount of Cu(I) into the Fe3O4 structure (Fe2.85Cu0.15O4). With increased Cu content, the catalyst was dominated with Cu2O and the Fe3O4 phase disappeared, the catalytic performance of Fe-Cu bimetal oxide became worse. The Cu(I)-Fe3O4/C composite was enriched with Fe(II), Fe(III) and Cu(I) sites. The prepared Cu-Fe bimetal oxide/C composite exhibited higher specific TOF and oxidation efficiency E on carbamazepine oxidation than Fe2.85Cu0.15O4 and Fe3O4. The enhanced catalytic reactivity was attributed to the synergetic effect of surface Fe and Cu species on the H2O2 activation. The dissolved metals induced catalytic reaction at pH 4.5-8.1 was ignorable. Thus, the catalytic decomposition of H2O2 by Cu-Fe3O4/C at near neutral pH was controlled by interface reactions. The CBZ in the close proximity to the interface was attacked by the generated ROS and formed urea, 2-hydroxybenzyl alcohol and other oxidative products.


Asunto(s)
Carbamazepina/química , Carbono/química , Cobre/química , Peróxido de Hidrógeno/química , Nanopartículas de Magnetita/química , Adsorción , Alcohol Bencilo/química , Catálisis , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Porosidad , Especies Reactivas de Oxígeno/química , Propiedades de Superficie , Urea/química
5.
J Environ Sci (China) ; 80: 240-247, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30952341

RESUMEN

A method was developed for preparing high purity Al30O8(OH)56(H2O)2418+ (Al30) through elimination of impurities by complexation. Polyaluminum chloride II (PAC30) with Alc content of 75% was adopted as the source of Al30. The PAC30 was prepared under conditions of total aluminum concentration 0.1 mol/L and OH-/Al ratio 2.2 to obtain the highest content of Al30. A precipitation/metathesis method, organic solvent precipitation method and organic complexation method were examined to separate and purify Al30. It was found that only by the organic complexation method could high purity Al30 products be obtained in large yield economically. In the experiments, benzoic acid was used as the coordinating reagent to decompose the main impurity AlO4Al12(OH)24(H2O)127+ (Al13), and the Al30 product could be obtained by precipitation and metathesis operations. It was noteworthy that the decomposition of impurities by benzoic acid could be completed in 2 hr. The Al30 product was characterized by Ferron assay, 27Al-NMR, SEM, XRD and TGA. The results showed that the purity of the Al30 product could exceed 92%.


Asunto(s)
Aluminio/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...