Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
PLoS Negl Trop Dis ; 18(5): e0012167, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701065

RESUMEN

BACKGROUND: Plague, caused by the bacterium Yersinia pestis, is a zoonotic disease that poses considerable threats to human health. Nucleic acid tests are crucial for plague surveillance and the rapid detection of Y. pestis. However, inhibitors in complex samples such as soil and animal tissues often hamper nucleic acid detection, leading to a reduced rate of identifying low concentrations of Y. pestis. To address this challenge, we developed a sensitive and specific droplet digital polymerase chain reaction (ddPCR) assay for detecting Y. pestis DNA from soil and animal tissue samples. METHODS: Three genes (ypo2088, caf1, and pla) from Y. pestis were used to develop a multi-target ddPCR assay. The limits of detection (LoD), reproducibility, and specificity were assessed for bacterial genomic DNA samples. The ability of the assay to detect low concentrations of Y. pestis DNA from simulated soil and mouse liver tissue samples was respectively evaluated and compared with that of quantitative real-time PCR (qPCR). RESULTS: The results showed that the ddPCR LoDs ranged from 6.2 to 15.4 copies/reaction for the target genes, with good reproducibility and high specificity for Y. pestis. By testing 130 soil and mouse liver tissue samples spiked with Y. pestis, the ddPCR assay exhibited a better sensitivity than that of the qPCR assay used in the study, with LoDs of 102 colony forming units (CFU)/100 mg soil and 103 CFU/20 mg liver. Moreover, the assay presented good quantitative linearity (R2 = 0.99) for Y. pestis at 103-106 CFU/sample for soil and liver samples. CONCLUSION: The ddPCR assay presented good performance for detecting Y. pestis DNA from soil and mouse tissue samples, showing great potential for improving the detection rate of low concentrations of Y. pestis in plague surveillance and facilitating the early diagnosis of plague cases.


Asunto(s)
Peste , Sensibilidad y Especificidad , Microbiología del Suelo , Yersinia pestis , Yersinia pestis/genética , Yersinia pestis/aislamiento & purificación , Animales , Peste/diagnóstico , Peste/microbiología , Ratones , Reacción en Cadena de la Polimerasa/métodos , ADN Bacteriano/genética , Reproducibilidad de los Resultados , Proteínas Bacterianas/genética , Hígado/microbiología , Límite de Detección , Humanos
2.
PLoS Pathog ; 20(3): e1012129, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38547321

RESUMEN

We recently identified two virulence-associated small open reading frames (sORF) of Yersinia pestis, named yp1 and yp2, and null mutants of each individual genes were highly attenuated in virulence. Plague vaccine strain EV76 is known for strong reactogenicity, making it not suitable for use in humans. To improve the immune safety of EV76, three mutant strains of EV76, Δyp1, Δyp2, and Δyp1&yp2 were constructed and their virulence attenuation, immunogenicity, and protective efficacy in mice were evaluated. All mutant strains were attenuated by the subcutaneous (s.c.) route and exhibited more rapid clearance in tissues than the parental strain EV76. Under iron overload conditions, only the mice infected with EV76Δyp1 survived, accompanied by less draining lymph nodes damage than those infected by EV76. Analysis of cytokines secreted by splenocytes of immunized mice found that EV76Δyp2 induced higher secretion of multiple cytokines including TNF-α, IL-2, and IL-12p70 than EV76. On day 42, EV76Δyp2 or EV76Δyp1&yp2 immunized mice exhibited similar protective efficacy as EV76 when exposed to Y. pestis 201, both via s.c. or intranasal (i.n.) routes of administration. Moreover, when exposed to 200-400 LD50 Y. pestis strain 201Δcaf1 (non-encapsulated Y. pestis), EV76Δyp2 or EV76Δyp1&yp2 are able to afford about 50% protection to i.n. challenges, significantly better than the protection afforded by EV76. On 120 day, mice immunized with EV76Δyp2 or EV76Δyp1&yp2 cleared the i.n. challenge of Y. pestis 201-lux as quickly as those immunized with EV76, demonstrating 90-100% protection. Our results demonstrated that deletion of the yp2 gene is an effective strategy to attenuate virulence of Y. pestis EV76 while improving immunogenicity. Furthermore, EV76Δyp2 is a promising candidate for conferring protection against the pneumonic and bubonic forms of plague.


Asunto(s)
Vacuna contra la Peste , Vacunas , Yersinia pestis , Humanos , Animales , Ratones , Yersinia pestis/genética , Sistemas de Lectura Abierta , Vacuna contra la Peste/genética , Citocinas/genética
3.
Proc Natl Acad Sci U S A ; 121(4): e2312556121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38227655

RESUMEN

Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease caused by the rodent-transmitted orthohantaviruses (HVs), with China possessing the most cases globally. The virus hosts in China are Apodemus agrarius and Rattus norvegicus, and the disease spread is strongly influenced by global climate dynamics. To assess and predict the spatiotemporal trends of HFRS from 2005 to 2098, we collected historical HFRS data in mainland China (2005-2020), historical and projected climate and population data (2005-2098), and spatial variables including biotic, environmental, topographical, and socioeconomic. Spatiotemporal predictions and mapping were conducted under 27 scenarios incorporating multiple integrated representative concentration pathway models and population scenarios. We identify the type of magistral HVs host species as the best spatial division, including four region categories. Seven extreme climate indices associated with temperature and precipitation have been pinpointed as key factors affecting the trends of HFRS. Our predictions indicate that annual HFRS cases will increase significantly in 62 of 356 cities in mainland China. Rattus regions are predicted to be the most active, surpassing Apodemus and Mixed regions. Eighty cities are identified as at severe risk level for HFRS, each with over 50 reported cases annually, including 22 new cities primarily located in East China and Rattus regions after 2020, while 6 others develop new risk. Our results suggest that the risk of HFRS will remain high through the end of this century, with Rattus norvegicus being the most active host, and that extreme climate indices are significant risk factors. Our findings can inform evidence-based policymaking regarding future risk of HFRS.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Ratas , Animales , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/etiología , Clima , Zoonosis , China/epidemiología , Murinae , Incidencia
4.
Front Cell Infect Microbiol ; 13: 1288371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089818

RESUMEN

Yersinia pestis, the causative agent of plague, is a genetically monomorphic bacterial pathogen that evolved from Yersinia pseudotuberculosis approximately 7,400 years ago. We observed unusually frequent mutations in Y. pestis YPO0623, mostly resulting in protein translation termination, which implies a strong natural selection. These mutations were found in all phylogenetic lineages of Y. pestis, and there was no apparent pattern in the spatial distribution of the mutant strains. Based on these findings, we aimed to investigate the biological function of YPO0623 and the reasons for its frequent mutation in Y. pestis. Our in vitro and in vivo assays revealed that the deletion of YPO0623 enhanced the growth of Y. pestis in nutrient-rich environments and led to increased tolerance to heat and cold shocks. With RNA-seq analysis, we also discovered that the deletion of YPO0623 resulted in the upregulation of genes associated with the type VI secretion system (T6SS) at 26°C, which probably plays a crucial role in the response of Y. pestis to environment fluctuations. Furthermore, bioinformatic analysis showed that YPO0623 has high homology with a PLP-dependent aspartate aminotransferase in Salmonella enterica, and the enzyme activity assays confirmed its aspartate aminotransferase activity. However, the enzyme activity of YPO0623 was significantly lower than that in other bacteria. These observations provide some insights into the underlying reasons for the high-frequency nonsense mutations in YPO0623, and further investigations are needed to determine the exact mechanism.


Asunto(s)
Aspartato Aminotransferasas , Peste , Yersinia pestis , Codón sin Sentido/metabolismo , Filogenia , Peste/microbiología , Yersinia pestis/genética , Yersinia pestis/metabolismo , Yersinia pseudotuberculosis/genética
5.
Bioinform Adv ; 3(1): vbad115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745000

RESUMEN

Motivation: High-resolution target pathogen detection using metagenomic sequencing data represents a major challenge due to the low concentration of target pathogens in samples. We introduced mStrain, a novel Yesinia pestis strain/lineage-level identification tool that utilizes metagenomic data. mStrain successfully identified Y. pestis at the strain/lineage level by extracting sufficient information regarding single-nucleotide polymorphisms (SNPs), which can therefore be an effective tool for identification and source tracking of Y. pestis based on metagenomic data during a plague outbreak. Definition: . Strain-level identification: Assigning the reads in the metagenomic sequencing data to an exactly known or most closely representative Y. pestis strain. Lineage-level identification: Assigning the reads in the metagenomic sequencing data to a specific lineage on the phylogenetic tree. canoSNPs: The unique and typical SNPs present in all representative strains. Ancestor/derived state: An SNP is defined as the ancestor state when consistent with the allele of Yersinia pseudotuberculosis strain IP32953; otherwise, the SNP is defined as the derived state. Availability and implementation: The code for running mStrain, the test dataset, and instructions for running the code can be found at the following GitHub repository: https://github.com/xwqian1123/mStrain.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37602146

RESUMEN

Since its first identification in 1894 during the third pandemic in Hong Kong, there has been significant progress of understanding the lifestyle of Yersinia pestis, the pathogen that is responsible for plague. Although we now have some understanding of the pathogen's physiology, genetics, genomics, evolution, gene regulation, pathogenesis and immunity, there are many unknown aspects of the pathogen and its disease development. Here, we focus on some of the knowns and unknowns relating to Y. pestis and plague. We notably focus on some key Y. pestis physiological and virulence traits that are important for its mammal-flea-mammal life cycle but also its emergence from the enteropathogen Yersinia pseudotuberculosis. Some aspects of the genetic diversity of Y. pestis, the distribution and ecology of plague as well as the medical countermeasures to protect our population are also provided. Lastly, we present some biosafety and biosecurity information related to Y. pestis and plague.

8.
PLoS Negl Trop Dis ; 17(8): e0011527, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37549110

RESUMEN

Plague, one of the most devastating infectious diseases in human history, is caused by the bacterium Yersinia pestis. Since the 1950s, the Dehong Dai-Jingpo Autonomous Prefecture (DH) in Yunnan Province, China, has recorded plague outbreaks that have resulted in 1,153 human cases and 379 deaths. The genetic diversity and transmission characteristics of Y. pestis strains in this region remain unknown. Here, we performed high-resolution genomic epidemiological analysis of 175 Y. pestis strains isolated from five counties and 19 towns in DH between 1953 and 2007. Phylogenetic analysis revealed that most DH strains were located in lineage 1.ORI2, which could be further subdivided into seven sub-phylogroups (SPG1-SPG7). The dominant sub-phylogroups of Y. pestis in DH varied during different periods and presented a population shift. Genomic evidence showed that plague might have emerged from the southwest of DH (e.g., Longchuan or Ruili counties) or its bordering countries, and subsequently spread to the northeast in multiple waves between 1982 and 2007. Our study infers a fine-scale phylogeny and spread pattern of the DH Y. pestis population, which extends our knowledge regarding its genetic diversity and provides clues for the future prevention and control of plague in this region.


Asunto(s)
Peste , Yersinia pestis , Humanos , Peste/epidemiología , Peste/microbiología , Filogenia , China/epidemiología , Genómica
9.
Proc Natl Acad Sci U S A ; 120(33): e2305403120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549270

RESUMEN

Continually emerging SARS-CoV-2 variants of concern that can evade immune defenses are driving recurrent epidemic waves of COVID-19 globally. However, the impact of measures to contain the virus and their effect on lineage diversity dynamics are poorly understood. Here, we jointly analyzed international travel, public health and social measures (PHSM), COVID-19 vaccine rollout, SARS-CoV-2 lineage diversity, and the case growth rate (GR) from March 2020 to September 2022 across 63 countries. We showed that despite worldwide vaccine rollout, PHSM are effective in mitigating epidemic waves and lineage diversity. An increase of 10,000 monthly travelers in a single country-to-country route between endemic countries corresponds to a 5.5% (95% CI: 2.9 to 8.2%) rise in local lineage diversity. After accounting for PHSM, natural immunity from previous infections, and waning immunity, we discovered a negative association between the GR of cases and adjusted vaccine coverage (AVC). We also observed a complex relationship between lineage diversity and vaccine rollout. Specifically, we found a significant negative association between lineage diversity and AVC at both low and high levels but not significant at the medium level. Our study deepens the understanding of population immunity and lineage dynamics for future pandemic preparedness and responsiveness.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Vacunas contra la COVID-19 , Salud Pública , COVID-19/epidemiología , COVID-19/prevención & control , Vacunación , Pandemias/prevención & control
10.
Commun Biol ; 6(1): 847, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582843

RESUMEN

Plague, caused by Yersinia pestis, is a zoonotic disease that can reemerge and cause outbreaks following decades of latency in natural plague foci. However, the genetic diversity and spread pattern of Y. pestis during these epidemic-silent cycles remain unclear. In this study, we analyze 356 Y. pestis genomes isolated between 1952 and 2016 in the Yunnan Rattus tanezumi plague focus, China, covering two epidemic-silent cycles. Through high-resolution genomic epidemiological analysis, we find that 96% of Y. pestis genomes belong to phylogroup 1.ORI2 and are subdivided into two sister clades (Sublineage1 and Sublineage2) characterized by different temporal-spatial distributions and genetic diversity. Most of the Sublineage1 strains are isolated from the first epidemic-silent cycle, while Sublineage2 strains are predominantly from the second cycle and revealing a west to east spread. The two sister clades evolved in parallel from a common ancestor and independently lead to two separate epidemics, confirming that the pathogen responsible for the second epidemic following the silent interval is not a descendant of the causative strain of the first epidemic. Our results provide a mechanism for defining epidemic-silent cycles in natural plague foci, which is valuable in the prevention and control of future plague outbreaks.


Asunto(s)
Epidemias , Peste , Yersinia pestis , Animales , Ratas , Peste/epidemiología , Yersinia pestis/genética , China/epidemiología , Genotipo , Genómica
11.
J Med Microbiol ; 72(8)2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37578331

RESUMEN

Introduction. The human oocyte microenvironment is follicular fluid, which is important for follicle growth, ovulation and maturation of the oocyte. The micro-organisms present in follicular fluid could be a predictor of in vitro fertilization outcomes.Hypothesis/Gap Statement. Women with follicular fluid colonized with micro-organisms can be asymptomatic, but the presence of some genera in the follicular fluid correlates with in vitro fertilization.Aim. To confirm the existence of micro-organisms in follicular fluid, and to profile the micro-organisms present in follicular fluid sampled from women undergoing in vitro fertilization with different outcomes.Methodology. Women undergoing in vitro fertilization (n=163) were divided into different subgroups according to their in vitro fertilization outcomes. Their follicular fluid samples were collected, and among them, 157 samples were analysed by 16S rDNA sequencing, and 19 samples were analysed using culturomics.Results. The culturomics results suggested that the 19 follicular fluid samples were not sterile. The isolation rates for Streptococcus, Finegoldia and Peptoniphilus were >50 % in the 19 samples. Linear discriminant analysis effect size analysis showed differential bacteria abundance according to the pregnancy rate, the rate of normal fertilization, the rate of high-quality embryos and the rate of available oocytes. The sequencing results showed that micro-organisms could be detected in all 157 samples. Pseudomonas, Lactobacillus, Comamonas, Streptococcus and Acinetobacter were detected in all of the samples, but with a wide range of relative abundance. Pseudomonas, Lactobacillus, Ralstonia and Vibrio constituted a notable fraction of the microbiota.Conclusions. Follicular fluid is not sterile. Micro-organisms in follicular fluid could be a predictor of in vitro fertilization outcomes.


Asunto(s)
Líquido Folicular , Oocitos , Embarazo , Femenino , Humanos , Fertilización In Vitro/métodos
12.
Sci Rep ; 13(1): 11906, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488160

RESUMEN

The incidence of plague has rebounded in the Americas, Asia, and Africa alongside rapid globalization and climate change. Previous studies have shown local climate to have significant nonlinear effects on plague dynamics among rodent communities. We analyzed an 18-year database of plague, spanning 1998 to 2015, in the foci of Mongolia and China to trace the associations between marmot plague and climate factors. Our results suggested a density-dependent effect of precipitation and a geographic location-dependent effect of temperature on marmot plague. That is, a significantly positive relationship was evident between risk of plague and precipitation only when the marmot density exceeded a certain threshold. The geographical heterogeneity of the temperature effect and the contrasting slopes of influence for the Qinghai-Tibet Plateau (QTP) and other regions in the study (nQTP) were primarily related to diversity of climate and landscape types.


Asunto(s)
Peste , Animales , Peste/epidemiología , Marmota , Mongolia , China/epidemiología , Tibet/epidemiología , Roedores
13.
Microbiol Spectr ; 11(4): e0046023, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458592

RESUMEN

Increasing evidence shows that protein lysine acetylation is involved in almost every aspect of cellular physiology in bacteria. Yersinia pestis is a flea-borne pathogen responsible for millions of human deaths in three global pandemics. However, the functional role of lysine acetylation in this pathogen remains unclear. Here, we found more acetylated proteins and a higher degree of acetylation in Y. pestis grown under mammalian host (Mh) conditions than under flea vector (Fv) conditions, suggesting that protein acetylation could significantly change during fleabite transmission. Comparative acetylome analysis of mutants of YfiQ and CobB, the major acetyltransferase and deacetylase of Y. pestis, respectively, identified 23 YfiQ-dependent and 315 CobB-dependent acetylated proteins. Further results demonstrated that acetylation of Lys73 of the SlyA protein, a MarR-family transcriptional regulator, inhibits its binding to the promoter of target genes, including hmsT that encodes diguanylate cyclase responsible for the synthesis of c-di-GMP, and significantly enhances biofilm formation of Y. pestis. Our study presents the first extensive acetylome data of Y. pestis and a critical resource for the functional study of lysine acetylation in this pathogen. IMPORTANCE Yersinia pestis is the etiological agent of plague, historically responsible for three global pandemics. The 2017 plague epidemic in Madagascar was a reminder that Y. pestis remains a real threat in many parts of the world. Plague is a zoonotic disease that primarily infects rodents via fleabite, and transmission of Y. pestis from infected fleas to mammals requires rapid adaptive responses to adverse host environments to establish infection. Our study provides the first global profiling of lysine acetylation derived from mass spectrometry analysis in Y. pestis. Our data set can serve as a critical resource for the functional study of lysine acetylation in Y. pestis and provides new molecular insight into the physiological role of lysine acetylation in proteins. More importantly, we found that acetylation of Lys73 of SlyA significantly promotes biofilm formation of Y. pestis, indicating that bacteria can use lysine acetylation to fine-tune the expression of genes to improve adaptation.


Asunto(s)
Peste , Siphonaptera , Yersinia pestis , Animales , Humanos , Yersinia pestis/metabolismo , Peste/microbiología , Lisina/metabolismo , Acetilación , Siphonaptera/microbiología , Biopelículas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mamíferos
14.
J Health Popul Nutr ; 42(1): 63, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420277

RESUMEN

BACKGROUND: The elevated circulating toxins secondary to the impairment of intestinal barrier integrity commonly elicit a chronic inflammatory response and finally contribute to multiple diseases. These toxins, including bacterial by-products and heavy metals, are the potent risk factors for the development of recurrent spontaneous abortion (RSA). Preclinical evidence suggests that several dietary fibers can restore intestinal barrier function and decrease the accumulation of heavy metals. However, it is uncertain whether treatment with a newly developed blend of dietary fibers product (Holofood) benefits patients with RSA. METHODS: In this trial, we enrolled 70 adult women with RSA, who were randomly assigned into the experiment group and the control group in a 2:1 ratio. Upon the basis of conventional therapy, subjects in the experiment group (n = 48) received 8 weeks oral administration with Holofood three times daily at a dose of 10 g each time. Subjects without Holofood consumption were set as the control (n = 22). Blood samples were collected for the determinations of metabolic parameters, heavy mental lead, and the indices related to intestinal barrier integrity (D-lactate, bacterial endotoxin, and diamine oxidase activity). RESULTS: The reduction amplitude in blood lead from baseline to week 8 was 40.50 ± 54.28 (µg/L) in the experiment group as compared with 13.35 ± 36.81 (µg/L) in the control group (P = 0.037). The decreased level of serum D-lactate from baseline to week 8 was 5.58 ± 6.09 (mg/L) in the experiment group as compared with - 2.38 ± 8.90 (mg/L, P < 0.0001) in the control group. The change in serum DAO activity from baseline to week 8 was 3.26 ± 2.23 (U/L) in the experiment group as compared with - 1.24 ± 2.22 (U/L, P < 0.0001) in the control group. Participants who received Holofood had a greater decline in blood endotoxin from baseline to week 8 than those in the control group. Moreover, by comparing with the self-baseline, Holofood consumption significantly decreased the blood levels of lead, D-lactate, bacterial endotoxin, and DAO activity. CONCLUSION: Our results suggest that Holofood affords a clinically relevant improvements in blood lead level and intestinal barrier dysfunction in patients with RSA.


Asunto(s)
Aborto Espontáneo , Plomo , Humanos , Adulto , Femenino , Embarazo , Plomo/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Aborto Espontáneo/metabolismo , Endotoxinas/metabolismo , Fibras de la Dieta/uso terapéutico , Fibras de la Dieta/metabolismo , Ácido Láctico/metabolismo
15.
Microbiol Spectr ; 11(4): e0217022, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37260413

RESUMEN

Vibrio parahaemolyticus is a marine bacterium coming from estuarine environments, where the migratory birds can easily be colonized by V. parahaemolyticus. Migratory birds may be important reservoirs of V. parahaemolyticus by growth and re-entry into the environment. To further explore the spreading mechanism of V. parahaemolyticus among marine life, human beings, and migratory birds, we aimed to investigate the characteristics of the genetic diversity, antimicrobial resistance, virulence genes, and a potentially informative gene marker of V. parahaemolyticus isolated from migratory birds in China. This study recovered 124 (14.55%) V. parahaemolyticus isolates from 852 fecal and environmental (water) samples. All of the 124 strains were classified into 85 known sequence types (STs), of which ST-2738 was most frequently identified. Analysis of the population structure using whole-genome variation of the 124 isolates illustrated that they grouped into 27 different clonal groups (CGs) belonging to the previously defined geographical populations VppX and VppAsia. Even though these genomes have high diversity, an extra copy of tRNA-Gly was presented in all migratory bird-carried V. parahaemolyticus isolates, which could be used as a potentially informative marker of the V. parahaemolyticus strains derived from birds. Antibiotic sensitivity experiments revealed that 47 (37.10%) isolates were resistant to ampicillin. Five isolates harbored the plasmid-mediated quinolone resistance (PMQR) gene qnrD, which has not previously been identified in this species. The investigation of antibiotic resistance provides the basic knowledge to further evaluate the risk of enrichment and reintroduction of pathogenic V. parahaemolyticus strains in migratory birds. IMPORTANCE The presence of V. parahaemolyticus in migratory birds' fecal samples implies that the human pathogenic V. parahaemolyticus strains may also potentially infect birds and thus pose a risk for zoonotic infection and food safety associated with re-entry into the environment. Our study firstly highlights the extra copy of tRNA as a potentially informative marker for identifying the bird-carried V. parahaemolyticus strains. Also, we firstly identify the plasmid-mediated quinolone resistance (PMQR) gene qnrD in V. parahaemolyticus. To further evaluate the risk of enrichment and reintroduction of pathogenic strains carried by migratory birds, we suggest conducting estuarine environmental surveillance to monitor the antibiotic resistance and virulence factors of bird-carried V. parahaemolyticus isolates.


Asunto(s)
Quinolonas , Vibriosis , Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Quinolonas/farmacología , Antibacterianos/farmacología , Ampicilina , Plásmidos/genética , Vibriosis/microbiología
16.
Front Cell Infect Microbiol ; 13: 1174510, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305418

RESUMEN

Plague caused by Yersinia pestis remains a public health threat worldwide. Because multidrug-resistant Y. pestis strains have been found in both humans and animals, phage therapy has attracted increasing attention as an alternative strategy against plague. However, phage resistance is a potential drawback of phage therapies, and the mechanism of phage resistance in Y. pestis is yet to be investigated. In this study, we obtained a bacteriophage-resistant strain of Y. pestis (S56) by continuously challenging Y. pestis 614F with the bacteriophage Yep-phi. Genome analysis identified three mutations in strain S56: waaA* (9-bp in-frame deletion 249GTCATCGTG257), cmk* (10-bp frameshift deletion 15CCGGTGATAA24), and ail* (1-bp frameshift deletion A538). WaaA (3-deoxy-D-manno-octulosonic acid transferase) is a key enzyme in lipopolysaccharide biosynthesis. The waaA* mutation leads to decreased phage adsorption because of the failure to synthesize the lipopolysaccharide core. The mutation in cmk (encoding cytidine monophosphate kinase) increased phage resistance, independent of phage adsorption, and caused in vitro growth defects in Y. pestis. The mutation in ail inhibited phage adsorption while restoring the growth of the waaA null mutant and accelerating the growth of the cmk null mutant. Our results confirmed that mutations in the WaaA-Cmk-Ail cascade in Y. pestis contribute to resistance against bacteriophage. Our findings help in understanding the interactions between Y. pestis and its phages.


Asunto(s)
Bacteriófagos , Peste , Yersinia pestis , Animales , Humanos , Yersinia pestis/genética , Lipopolisacáridos , Mutación , Bacteriófagos/genética
17.
Heliyon ; 9(5): e16353, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37251856

RESUMEN

Rapid and ultrasensitive microbial detection in actual samples have challenges because of target pathogen diversity and low abundance. In this study, we attempted to capture and concentrate multiple pathogens by combining magnetic beads with polyclonal antibodies against a universal antigen of ompA, LAMOA-1, before further detection. A protein sequence consisting of 241 amino acids with spatial conformation similar to E. coli ompA was identified and expressed as a recombinant protein in prokaryotes according to the results of sequence alignment among 432 sequences of ompA belonging to intestinal bacteria from gram-negative bacteria. Purified from immunized rabbits, the anti-LAMOA-1 antibody was shown to effectively recognize 12 foodborne bacterial species. Antibody-conjugated beads were used to concentrate the bacteria when the bacterial concentration in artificially contaminated samples is between 10 and 100 CFU/mL, which shortens detection duration by 8-24 h. The enrichment strategy is potentially beneficial for detection of foodborne pathogens.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37184922

RESUMEN

Two related anaerobic strains, designated as SWB101512T and SWB19611, were isolated from the bronchoalveolar lavage fluid of two lung cancer patients. Cells were Gram-stain-positive, non-motile and non-spore-forming. Growth could be observed at 26-45 °C (optimum, 37 °C), pH 5.0-8.5 (optimum, pH 7.0) and with 0.5-2.0 % (v/w) NaCl (optimum, 1.0%). The 16S rRNA gene sequences of SWB101512T and SWB19611 showed the highest similarities to Denitrobacterium detoxificans DSM 21843T (91.1 and 91.3 %, respectively). The phylogenetic tree based on the 16S rRNA gene sequences and the core genome sequences demonstrated that the two strains clustered together and formed a distinct lineage within the family Eggerthellaceae. The DNA G+C contents of strains SWB101512T and SWB19611 were 62.0 and 61.9 mol%, respectively. The predominant cellular fatty acids of strains SWB101512T and SWB19611 were C16 : 0 DMA (27.8 and 28.8 %, respectively). The respiratory menaquinone in both strains was menaquinone 6 and the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, two phospholipids, three glycolipids and three unidentified lipids. Based on evidence from phenotypic, chemotaxonomic and genomic analyses, a new genus and species belonging to the family Eggerthellaceae, named Curtanaerobium respiraculi gen. nov., sp. nov. is proposed. The type strain is SWB101512T (=GDMCC 1.2991T=JCM 35330T).


Asunto(s)
Actinobacteria , Ácidos Grasos , Humanos , Ácidos Grasos/química , Filogenia , Composición de Base , ARN Ribosómico 16S/genética , Anaerobiosis , Líquido del Lavado Bronquioalveolar , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Fosfolípidos/química , Bacterias Anaerobias/genética , Actinobacteria/genética , China
19.
EBioMedicine ; 91: 104560, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37060744

RESUMEN

BACKGROUND: Patients with auto-brewery syndrome (ABS) become inebriated after the ingestion of an alcohol-free, high-carbohydrate diet. Our previous work has shown that high-alcohol-producing (HiAlc) Klebsiella pneumoniae can generate excessive endogenous ethanol and cause non-alcoholic fatty liver disease (NAFLD). Therefore, it is reasonable to speculate that such bacteria might play an important role in the pathogenesis of ABS. METHODS: The characteristics and metabolites of the intestinal flora from a clinical cohort of patients with ABS were analysed during different stages of disease and compared to a group of healthy controls. An in vitro culture system of relevant samples was used for screening drug sensitivity and ABS-inducing factors. Rabbit intestinal and murine models were established to verify if the isolated strains could induce ABS in vivo. FINDINGS: We observed intestinal dysbiosis with decreased abundance of Firmicutes and increased of Proteobacteria in patients with ABS compared with healthy controls. The abundance of the genus Klebsiella in Enterobacteriaceae was strongly associated with fluctuations of patient's blood alcohol concentration. We isolated three species of HiAlc Klebsiella from ABS patients, which were able to induce ABS in mice. Monosaccharide content was identified as a potential food-related inducing factor for alcohol production. Treatments with antibiotics, a complex probiotic preparation and a low-carbohydrate diet not only alleviated ABS, but also erased ABS relapse during the follow-up observation of one of the patients. INTERPRETATION: Excessive endogenous alcohol produced by HiAlc Klebsiella species was an underlying cause of bacterial ABS. Combined prescription of appropriate antibiotics, complex probiotic preparation and a controlled diet could be sufficient for treatment of bacteria-caused ABS. FUNDING: The funders are listed in the acknowledgement.


Asunto(s)
Etanol , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Conejos , Etanol/efectos adversos , Etanol/metabolismo , Klebsiella , Nivel de Alcohol en Sangre , Estudios de Casos y Controles , Bacterias
20.
Microbiol Spectr ; 11(3): e0031423, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37092999

RESUMEN

Recently, microbiota dysbiosis in lung cancer has attracted immense attention. Studies on lung microbes are mostly based on sequencing, which has left the potentially functional bacteria with extremely low abundance uncovered. In this study, we characterized and compared the lung and oral cavity microbiotas using culturomics and 16S rRNA gene sequencing. Of the 198 bacteria identified at the species level from bronchoalveolar lavage fluid (BALF) samples, Firmicutes was predominant (39.90%). Twenty bacterial species isolated from BALF samples were present in at least half of the patients and were also highly abundant in oral samples. Of all isolated strains, Streptococcus and Veillonella were highly dominant. The abundance of Prevotella and Veillonella decreased from the oral cavity to the lung, whereas that of Pseudomonas increased. Linear discriminant analysis effect size demonstrated that Prevotella was more abundant in the healthy samples than in the cancerous ones, which is in accordance with the isolation of Prevotella oralis only from the healthy group using culturomics. Moreover, Gemella sanguinis and Streptococcus intermedius were isolated only from the non-small-cell lung cancer (NSCLC) group, and 16S rRNA gene sequencing showed that they were higher in the NSCLC than in the small-cell lung cancer group. Furthermore, while Bacillus and Castellaniella were enriched in lung adenocarcinoma, Brucella was enriched in lung squamous cell carcinoma. Overall, alterations were observed in the microbial community of patients with lung cancer, whose diversity might be site and pathology dependent. Using culturomics and 16S rRNA gene amplicon sequencing, this study has provided insights into pulmonary and oral microbiota alterations in patients with lung cancer. IMPORTANCE The relationship between lung microbiota and cancer has been explored based on DNA sequencing; however, culture-dependent approaches are indispensable for further studies on the lung microbiota. In this study, we applied a comprehensive approach combining culturomics and 16S rRNA gene amplicon sequencing to detect members of the microbiotas in saliva and BALF samples from patients with unilateral lobar masses. We found alterations in the microbial community of patients with lung cancer, whose diversity might be site and pathology dependent. These features may be potential bacterial biomarkers and new targets for lung cancer diagnosis and treatment. In addition, a lung and oral microbial biobank from lung cancer patients was established, which represents a useful resource for studies of host-microbe interactions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Microbiota , Humanos , ARN Ribosómico 16S/genética , Genes de ARNr , Pulmón/microbiología , Microbiota/genética , Bacterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...