Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Exp Cell Res ; 437(2): 114012, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565343

RESUMEN

Ovarian cancer is one of the most common gynecological tumors worldwide. Despite the availability of multiple treatments for ovarian cancer, its resistance to chemotherapy remains a significant challenge. miRNAs play crucial roles in the initiation and progression of cancer by affecting processes such as differentiation, proliferation, and chemoresistance. According to microarray and qPCR analyses, miR-7704 is significantly downregulated in cisplatin-resistant cells compared to parental cells. In this study, we found that miR-7704 inhibited the proliferation and promoted cisplatin sensitivity of ovarian cancer cells in vitro and in vivo. Moreover, ectopic expression of miR-7704 had the same effect as IL2RB knockdown. Further mechanistic studies revealed that miR-7704 played an inhibitory role by regulating IL2RB expression to inactivate the AKT signaling pathway. Furthermore, IL2RB reversed the miR-7704 mediated resistance to cisplatin in ovarian cancer. Based on these findings, miR-7704 and IL2RB show the potential as novel therapeutic targets for ovarian cancer.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Femenino , Humanos , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Cisplatino/farmacología , Resistencia a Antineoplásicos , Retroalimentación , Regulación Neoplásica de la Expresión Génica , Subunidad beta del Receptor de Interleucina-2/metabolismo , Subunidad beta del Receptor de Interleucina-2/farmacología , Subunidad beta del Receptor de Interleucina-2/uso terapéutico , MicroARNs/metabolismo , Neoplasias Ováricas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Carbohydr Res ; 538: 109094, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38564900

RESUMEN

Human diseases often correlate with changes in protein glycosylation, which can be observed in serum or plasma samples. N-glycosylation, the most common form, can provide potential biomarkers for disease prognosis and diagnosis. However, glycoproteins constitute a relatively small proportion of the total proteins in human serum and plasma compared to the non-glycosylated protein albumin, which constitutes the majority. The detection of microheterogeneity and low glycan abundance presents a challenge. Mass spectrometry facilitates glycoproteomics research, yet it faces challenges due to interference from abundant plasma proteins. Therefore, methods have emerged to enrich N-glycans and N-linked glycopeptides using glycan affinity, chemical properties, stationary phase chemical coupling, bioorthogonal techniques, and other alternatives. This review focuses on N-glycans and N-glycopeptides enrichment in human serum or plasma, emphasizing methods and applications. Although not exhaustive, it aims to elucidate principles and showcase the utility and limitations of glycoproteome characterization.


Asunto(s)
Glicopéptidos , Glicoproteínas , Humanos , Glicopéptidos/química , Glicoproteínas/química , Glicosilación , Espectrometría de Masas/métodos , Polisacáridos
3.
Plants (Basel) ; 13(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38592865

RESUMEN

The rapid growth of industrialization and urbanization in China has led to an increase in soil heavy metal pollution, which poses a serious threat to ecosystem safety and human health. The advancement of spectral technology offers a way to rapidly and non-destructively monitor soil heavy metal content. In order to explore the potential of rice leaf spectra to indirectly estimate soil heavy metal content. We collected farmland soil samples and measured rice leaf spectra in Xushe Town, Yixing City, Jiangsu Province, China. In the laboratory, the heavy metals Cd and As were determined. In order to establish an estimation model between the pre-processed spectra and the soil heavy metals Cd and As content, a genetic algorithm (GA) was used to optimise the partial least squares regression (PLSR). The model's accuracy was evaluated and the best estimation model was obtained. The results showed that spectral pre-processing techniques can extract hidden information from the spectra. The first-order derivative of absorbance was more effective in extracting spectral sensitive information from rice leaf spectra. The GA-PLSR model selects only about 10% of the bands and has better accuracy in spectral modeling than the PLSR model. The spectral reflectance of rice leaves has the capacity to estimate Cd content in the soil (relative percent difference [RPD] = 2.09) and a good capacity to estimate As content in the soil (RPD = 2.97). Therefore, the content of the heavy metals Cd and As in the soil can be estimated indirectly from the spectral data of rice leaves. This study provides a reference for future remote sensing monitoring of soil heavy metal pollution in farmland that is quantitative, dynamic, and non-destructive over a large area.

4.
Adv Ther ; 41(4): 1621-1636, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38421558

RESUMEN

INTRODUCTION: Triple-negative breast cancer (TNBC) is a highly heterogeneous disease. Mining differentially expressed genes of TNBC is helpful to explore new therapeutic targets. This study aimed to investigate diagnostic biomarker genes in TNBC compared to normal tissue. Additionally, we explored the functions and prognostic value of these key genes as well as potential targeted drugs that could affect these genes. METHODS: Differential gene expression analysis was conducted using the R software with data from the Gene Expression Omnibus (GEO) database. Then, the identified differentially expressed genes (DEGs) were used to construct a protein-protein interaction (PPI) network using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape software. The mRNA expression levels of key genes were analyzed using the UALCAN database with data from The Cancer Genome Atlas (TCGA). Enrichment and survival analyses were performed using R software. In addition, potential compounds showing sensitivity to key genes were identified by gene set cancer analysis (GSCA). RESULTS: Compared with normal tissues, a total of 203 DEGs were upregulated in TNBC. These DEGs participated in various biological processes including nuclear division, microtubule binding, cell cycle, and the p53 signaling pathway. Through the PPI network analysis, ten key genes were identified, among which four genes showed significant correlation with poor progression-free interval (PFI) in patients with TNBC. Moreover, the four survival-related genes were found to act as sensitive therapeutic targets. CONCLUSION: The identified four key genes were considered new biomarkers for diagnosis and prognosis and also potential therapeutic targets for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Pronóstico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Perfilación de la Expresión Génica , Mapas de Interacción de Proteínas , Biomarcadores/metabolismo
5.
J Cancer ; 15(6): 1642-1656, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370372

RESUMEN

Fragments derived from tRNA, called tRNA-derived small RNAs (tsRNAs), have attracted widespread attention in the past decade. tsRNAs are widespread in prokaryotic and eukaryotic transcriptome, which contains two main types, tRNA-derived fragments (tRFs) and tRNA-derived stress-inducing RNA (tiRNAs), derived from the precursor tRNAs or mature tRNAs. According to differences in the cleavage position, tRFs can be divided into tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF, whereas tiRNAs can be divided into 5'-tiRNA and 3'-tiRNA. Studies have found that tRFs and tiRNAs are abnormally expressed in a variety of human malignant tumors, promote or inhibit the proliferation and apoptosis of cancer cells by regulating the expression of oncogene, and play an important role in the aggressive metastasis and progression of tumors. This article reviews the biological origins of various tsRNAs, introduces their functions and new concepts of related mechanisms, and focuses on the molecular mechanisms of tsRNAs in cancer, including breast cancer, prostate cancer, colorectal cancer, lung cancer, b-cell lymphoma, and chronic lymphoma cell leukemia. Lastly, this article puts forward some unresolved problems and future research prospects.

6.
JAMA Netw Open ; 7(2): e2354937, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335001

RESUMEN

Importance: Prehypertension increases the risk of developing hypertension and other cardiovascular diseases. Early and effective intervention for patients with prehypertension is highly important. Objective: To assess the efficacy of Tai Chi vs aerobic exercise in patients with prehypertension. Design, Setting, and Participants: This prospective, single-blinded randomized clinical trial was conducted between July 25, 2019, and January 24, 2022, at 2 tertiary public hospitals in China. Participants included 342 adults aged 18 to 65 years with prehypertension, defined as systolic blood pressure (SBP) of 120 to 139 mm Hg and/or diastolic BP (DBP) of 80 to 89 mm Hg. Interventions: Participants were randomized in a 1:1 ratio to a Tai Chi group (n = 173) or an aerobic exercise group (n = 169). Both groups performed four 60-minute supervised sessions per week for 12 months. Main Outcomes and Measures: The primary outcome was SBP at 12 months obtained in the office setting. Secondary outcomes included SBP at 6 months and DBP at 6 and 12 months obtained in the office setting and 24-hour ambulatory BP at 12 months. Results: Of the 1189 patients screened, 342 (mean [SD] age, 49.3 [11.9] years; 166 men [48.5%] and 176 women [51.5%]) were randomized to 1 of 2 intervention groups: 173 to Tai Chi and 169 to aerobic exercise. At 12 months, the change in office SBP was significantly different between groups by -2.40 (95% CI, -4.39 to -0.41) mm Hg (P = .02), with a mean (SD) change of -7.01 (10.12) mm Hg in the Tai Chi group vs -4.61 (8.47) mm Hg in the aerobic exercise group. The analysis of office SBP at 6 months yielded similar results (-2.31 [95% CI, -3.94 to -0.67] mm Hg; P = .006). Additionally, 24-hour ambulatory SBP (-2.16 [95% CI, -3.84 to -0.47] mm Hg; P = .01) and nighttime ambulatory SBP (-4.08 [95% CI, -6.59 to -1.57] mm Hg; P = .002) were significantly reduced in the Tai Chi group compared with the aerobic exercise group. Conclusions and Relevance: In this study including patients with prehypertension, a 12-month Tai Chi intervention was more effective than aerobic exercise in reducing SBP. These findings suggest that Tai Chi may help promote the prevention of cardiovascular disease in populations with prehypertension. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR1900024368.


Asunto(s)
Prehipertensión , Taichi Chuan , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Presión Sanguínea , Ejercicio Físico , Prehipertensión/terapia , Estudios Prospectivos , Adolescente , Adulto Joven , Anciano
7.
Cell Death Discov ; 10(1): 25, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218941

RESUMEN

Copper is an essential micronutrient that plays a pivotal role in numerous physiological processes in virtually all cell types. Nevertheless, the dysregulation of copper homeostasis, whether towards excess or deficiency, can lead to pathological alterations, such as atherosclerosis. With the advent of the concept of copper-induced cell death, termed cuproptosis, researchers have increasingly focused on the potential role of copper dyshomeostasis in atherosclerosis. In this review, we provide a broad overview of cellular and systemic copper metabolism. We then summarize the evidence linking copper dyshomeostasis to atherosclerosis and elucidate the potential mechanisms underlying atherosclerosis development in terms of both copper excess and copper deficiency. Furthermore, we discuss the evidence for and mechanisms of cuproptosis, discuss its interactions with other modes of cell death, and highlight the role of cuproptosis-related mitochondrial dysfunction in atherosclerosis. Finally, we explore the therapeutic strategy of targeting this novel form of cell death, aiming to provide some insights for the management of atherosclerosis.

8.
Chemosphere ; 352: 141302, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286309

RESUMEN

Perfluorooctane sulfonate (PFOS) is a persistent, anionic and ubiquitous contaminant that undergoes long-range transport within the environment. Its behavior has attracted wide-range academic and regulatory attention. In this article, a mass balance model was employed to simulate PFOS concentrations in the mainstream of Haihe River water system, encompassing sluices and artificial rivers. The dynamic simulation of PFOS concentrations in both sediment and freshwater took into account fluctuations in PFOS emissions, water levels and water discharge. Furthermore, the study delved into exploring the impacts of sluices and artificial rivers on the behavior of PFOS. The simulated concentrations of PFOS in steady state agreed with the measured concentrations in surveys carried out in Nov. 2019, July 2020, Oct. 2020, and June 2021. Every year, approximately 24 kg PFOS was discharged into the Bohai Sea with Chaobai New River being the largest contributor for 44 %. Moreover, the transport of PFOS in the original rivers is likely to be restricted by sluices and replaced by artificial rivers. Monte Carlo analysis showed that model predictions of PFOS concentrations in sediment were subject to greater uncertainty than those in freshwater as the former is impacted by more parameters, such as density of sediment. This study provides a scientific basis for the local government to manage and control PFOS.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ríos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Fluorocarburos/análisis , Agua/análisis , Ácidos Alcanesulfónicos/análisis
9.
Environ Pollut ; 341: 122930, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972680

RESUMEN

Bioaccumulation and human health risk assessment of Perfluoroalkyl acids (PFAAs) is important for pollutant hazard assessment. In this study, 26 aquatic organisms were collected from the Yangtze River estuary, the PFAAs concentrations in organisms were detected by liquid chromatography-mass spectrometry, and the trophic levels of organisms were constructed using nitrogen isotope analysis. The results showed that Perfluorobutane sulfonate (PFBS) was predominant in organisms with the mean concentration of 6.43 ± 8.21 ng/g ww. The biomagnification of organisms along the food chain was widespread, and the biomagnification factor (BMF) of perfluorooctane sulfonic (PFOS) was the most prominent. Trophic magnifcation factors (TMFs) of PFAAs were estimated in the marine food web, and TMFs >1 were observed in Perfluorodecanoic acid (PFDA), Perfluoroundecanoic acid (PFUnDA), Perfluorododecanoic acid (PFDoDA), and PFOS, indicating the biomagnifcation effects of these 4 individual PFAAs in organisms at Yangtze River estuary. The estimated daily intake (EDI) of PFBS was highest in adolescents aged 6-18 years, with EDIs of 18.9 ng/kg·bw/day for males and 14.0 ng/kg·bw/day for females. The hazard ratio (HR) of PFAAs reported in different age and gender groups were lower than 1.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Femenino , Humanos , Adolescente , Ríos/química , Bioacumulación , Contaminantes Químicos del Agua/análisis , Estuarios , Fluorocarburos/análisis , Alimentos Marinos/análisis , China , Ácidos Alcanesulfónicos/análisis , Monitoreo del Ambiente/métodos
10.
Mod Pathol ; 37(2): 100398, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043788

RESUMEN

Immunohistochemistry (IHC) is a well-established and commonly used staining method for clinical diagnosis and biomedical research. In most IHC images, the target protein is conjugated with a specific antibody and stained using diaminobenzidine (DAB), resulting in a brown coloration, whereas hematoxylin serves as a blue counterstain for cell nuclei. The protein expression level is quantified through the H-score, calculated from DAB staining intensity within the target cell region. Traditionally, this process requires evaluation by 2 expert pathologists, which is both time consuming and subjective. To enhance the efficiency and accuracy of this process, we have developed an automatic algorithm for quantifying the H-score of IHC images. To characterize protein expression in specific cell regions, a deep learning model for region recognition was trained based on hematoxylin staining only, achieving pixel accuracy for each class ranging from 0.92 to 0.99. Within the desired area, the algorithm categorizes DAB intensity of each pixel as negative, weak, moderate, or strong staining and calculates the final H-score based on the percentage of each intensity category. Overall, this algorithm takes an IHC image as input and directly outputs the H-score within a few seconds, significantly enhancing the speed of IHC image analysis. This automated tool provides H-score quantification with precision and consistency comparable to experienced pathologists but at a significantly reduced cost during IHC diagnostic workups. It holds significant potential to advance biomedical research reliant on IHC staining for protein expression quantification.


Asunto(s)
Aprendizaje Profundo , Humanos , Inmunohistoquímica , Hematoxilina/metabolismo , Algoritmos , Núcleo Celular/metabolismo
11.
Sci Total Environ ; 912: 168837, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38040376

RESUMEN

The use of alternative per- and polyfluoroalkyl substances (PFASs) has been practiced because of the restrictions on legacy PFASs. However, knowledge gaps exist on the ecological risks of alternatives and relationships between restrictions and emissions. This study systematically analyzed the occurrence characteristics, water-sediment partitioning behaviors, ecological risks, and emissions of legacy and alternative PFASs in the Bohai Bay Rim (BBR). The mean concentration of total PFASs was 46.105 ng/L in surface water and 6.125 ng/g dry weight (dw) in sediments. As an alternative for perfluorooctanoic acid (PFOA), hexafluoropropylene oxide dimer acid (GenX) had a concentration second only to PFOA in surface water. In sediments, perfluorobutyric acid (PFBA) and GenX were the two predominant contaminants. In the water-sediment partitioning system, GenX, 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (F-53B), and 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (8:2 Cl-PFESA) tended to be enriched towards sediments. The species sensitivity distribution (SSD) models revealed the low ecological risks of PFASs and their alternatives in the BBR. Moreover, predicted no-effected concentrations (PNECs) indicated that short-chain alternatives like PFBA and perfluorobutane sulfonate (PFBS) were safer for aquatic ecosystems, while caution should be exercised when using GenX and F-53B. Due to the incremental replacement of PFOA by GenX, cumulative emissions of 1317.96 kg PFOA and 667.22 kg GenX were estimated during 2004-2022, in which PFOA emissions were reduced by 59.2 % due to restrictions implemented since 2016. If more stringent restrictions are implemented from 2023 to 2030, PFOA emissions will further decrease by 85.0 %, but GenX emissions will increase by an additional 21.3 %. Simultaneously, GenX concentrations in surface water are forecasted to surge by 2.02 to 2.45 times in 2023. This study deepens the understanding of PFAS alternatives and assists authorities in developing policies to administer PFAS alternatives.

12.
bioRxiv ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38105939

RESUMEN

Profiling the binding of T cell receptors (TCRs) of T cells to antigenic peptides presented by MHC proteins is one of the most important unsolved problems in modern immunology. Experimental methods to probe TCR-antigen interactions are slow, labor-intensive, costly, and yield moderate throughput. To address this problem, we developed pMTnet-omni, an Artificial Intelligence (AI) system based on hybrid protein sequence and structure information, to predict the pairing of TCRs of αß T cells with peptide-MHC complexes (pMHCs). pMTnet-omni is capable of handling peptides presented by both class I and II pMHCs, and capable of handling both human and mouse TCR-pMHC pairs, through information sharing enabled this hybrid design. pMTnet-omni achieves a high overall Area Under the Curve of Receiver Operator Characteristics (AUROC) of 0.888, which surpasses competing tools by a large margin. We showed that pMTnet-omni can distinguish binding affinity of TCRs with similar sequences. Across a range of datasets from various biological contexts, pMTnet-omni characterized the longitudinal evolution and spatial heterogeneity of TCR-pMHC interactions and their functional impact. We successfully developed a biomarker based on pMTnet-omni for predicting immune-related adverse events of immune checkpoint inhibitor (ICI) treatment in a cohort of 57 ICI-treated patients. pMTnet-omni represents a major advance towards developing a clinically usable AI system for TCR-pMHC pairing prediction that can aid the design and implementation of TCR-based immunotherapeutics.

13.
Technol Cancer Res Treat ; 22: 15330338231186790, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38018116

RESUMEN

Cancer patients are at high risk of developing venous thromboembolism (VTE). The risk of VTE could be mitigated with the administration of prophylactic anticoagulants. Therefore, risk assessment models would be a useful tool in order to identify those patients who are at higher risk and will be benefited more by prophylactic anticoagulants. This study retrospectively examined 528 newly diagnosed colorectal cancer patients from January 2019 to January 2021. Specified logistic regression models were employed to screen the factors and establish prediction tools based on nomograms according to the final included variables. Discrimination, calibration, and clinical applicability were used to assess the performance of screening tools. In addition, internal verifications were conducted through 10-fold cross-verification, leave-one-out cross-validation, and Bootstrap verification. Four risk factors, closely related to the occurrence of VTE in colorectal cancer patients, were identified after univariate and multivariate logistic regression, including age, body mass index, activated partial thromboplastin time, and D-Dimer value. Besides, the risk assessment model named ABAD was built on the basis, displaying good discriminations and calibrations. The area under the curve was 0.705 (95% confidence interval [CI], 0.644 to 0.766). According to Hosmer-Lemeshow goodness-of-fit test, a good agreement between the predicted and observed VTE events in patients with newly-diagnosed gastrointestinal cancer was observed for χ2 = 6.864, P = .551. Internal validation was applied with a C-index of 0.669 in the 10-fold cross-verification, 0.658 in the leave-one-out cross verification and 0.684 in the bootstrap verification. We developed a prediction model called ABAD for newly diagnosed colorectal cancer patients, which can be used to predict the risk of VTE. After evaluation and internal verification, we believe that ABAD exhibited high predictive performance and availability and could be recommended.


Asunto(s)
Neoplasias Colorrectales , Embolia , Trombosis , Tromboembolia Venosa , Humanos , Estudios Retrospectivos , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/etiología , Tromboembolia Venosa/epidemiología , Anticoagulantes , Trombosis/complicaciones , Neoplasias Colorrectales/complicaciones , Embolia/complicaciones
14.
Funct Integr Genomics ; 23(3): 257, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37522982

RESUMEN

In recent years, the potassium voltage-gated channel subfamily D (KCND) channels, particularly KCND2 (also known as Kv4.2), have been suggested to play a role in a variety of cancers, but their role in breast cancer has not yet been revealed. We analyzed RNA sequencing data from The Cancer Genome Atlas database and the Genotype-Tissue Expression database to investigate the differential expression of KCND2 in breast cancer and normal breast tissue. In addition, we leveraged GO and KEGG analysis techniques to gain a better understanding of the potential functional enrichment of 500 genes related to KCND2. Our findings were validated using collected tissue samples and clinical data from hospitals showed that KCND2 is a crucial independent factor in the prognosis of breast cancer patients. The higher the expression of KCND2, the shorter the survival time of breast cancer patients. Colony formation assay confirmed that KCND2 promotes the proliferation of breast cancer cells, whereas transwell assay and wound healing assay verified that KCND2 promoted breast cancer invasion and migration. In addition, 5-Ethynyl-2'-deoxyuridine (EdU) and flow cytometry revealed that KCND2 affected the cycle changes of breast cancer cells and contributed to the G1/S phase transition of breast cancer cells. Overall, our study demonstrates that KCND2 holds a promising potential as a significant target for breast cancer diagnosis and therapy.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Pronóstico , Carcinogénesis , Proliferación Celular , Línea Celular Tumoral , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo
15.
Genes (Basel) ; 14(4)2023 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-37107679

RESUMEN

Polyploidy, the duplication of the entire genome within a single cell, is a significant characteristic of cells in many tissues, including the liver. The quantification of hepatic ploidy typically relies on flow cytometry and immunofluorescence (IF) imaging, which are not widely available in clinical settings due to high financial and time costs. To improve accessibility for clinical samples, we developed a computational algorithm to quantify hepatic ploidy using hematoxylin-eosin (H&E) histopathology images, which are commonly obtained during routine clinical practice. Our algorithm uses a deep learning model to first segment and classify different types of cell nuclei in H&E images. It then determines cellular ploidy based on the relative distance between identified hepatocyte nuclei and determines nuclear ploidy using a fitted Gaussian mixture model. The algorithm can establish the total number of hepatocytes and their detailed ploidy information in a region of interest (ROI) on H&E images. This is the first successful attempt to automate ploidy analysis on H&E images. Our algorithm is expected to serve as an important tool for studying the role of polyploidy in human liver disease.


Asunto(s)
Aprendizaje Profundo , Humanos , Eosina Amarillenta-(YS) , Hematoxilina , Hígado , Ploidias , Poliploidía
16.
Sci Total Environ ; 881: 163331, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37031941

RESUMEN

Increased concentrations of pharmaceutical and personal care products (PPCPs) have raised concerns about their impact on the ecological system and human health. To understand the environmental impact of PPCPs, we evaluated the fate of a typical PPCP of sulfamethoxazole (SMX) in a water-scarce city of Tianjin during 2013-2020 using a coupled model based on the dynamic fugacity model and HYDRUS-1D model. The results showed that the coupled model successfully simulated the reported SMX concentrations in the main fate media of water and soils, which accounted for 46.4 % and 53.0 % with equilibrium concentrations of 135-165 ng/L and 0.4-0.5 ng/g, respectively. The cross-media transfer flux results showed that advection was the prime input path for SMX in water, while degradation was the dominant output path. Wastewater irrigation and degradation were the main transfer processes of SMX in the soil. Moreover, human activities (i.e., emission loads) and climate (i.e., temperature and precipitation) change can significantly affect the concentrations and transfer rate of SMX in the media. These findings provide basic data and methods for the risk assessment of SMX in water-scarce regions.


Asunto(s)
Cosméticos , Contaminantes Químicos del Agua , Humanos , Sulfametoxazol , Multimedia , Cosméticos/análisis , Aguas Residuales , Agua , Contaminantes Químicos del Agua/análisis
17.
J Chromatogr A ; 1693: 463882, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36857982

RESUMEN

Exosomes have great potential as biomarker carriers for disease diagnosis and prognosis. In recent years, exosomal RNA (exoRNA) has become a promising candidate for the early diagnosis and prognosis of cancers, and its pathophysiological roles in various diseases have been revealed. For example, exosome-derived mRNAs, miRNAs, circRNAs, and lncRNAs function as signalling molecules to regulate tumour growth, angiogenesis, invasion, metastasis, and the response to chemotherapy. However, the isolation of exosomes and exoRNA with high quality and purity remains challenging due to the relatively small size of exosomes and the limited amount of RNA in exosomes. In this work, we developed a novel tandem enrichment method to isolate exoRNA from serum based on the specific interaction between titanium dioxide (TiO2) and the phosphate groups on the lipid bilayer of exosomes and of the exoRNA. TiO2-based RNA isolation was first demonstrated and optimized in HeLa cells. A total of 130.9 ± 8.34 µg of RNA was rapidly enriched from approximately 5 × 106 HeLa cells within 10 min. This was a 41.5% higher yield than that using a commercial Ultrapure RNA Kit. TiO2-based tandem enrichment of exoRNA was then performed using human serum, obtaining 64.53±3.41 ng of exoRNA from 500 µL of human serum within 30 min. A total of 2,137,902 reads, including seven types of exoRNAs, were identified from the exosomes. This method is compatible with various downstream RNA processing techniques and does not use toxic or irritating reagents, such as phenol or chloroform, providing a simple, economical, rapid, and safe approach for exoRNA extraction from biological samples.


Asunto(s)
Exosomas , MicroARNs , Humanos , Exosomas/genética , Células HeLa , Indicadores y Reactivos
18.
Biomed Pharmacother ; 161: 114539, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36933375

RESUMEN

The morbidity and mortality of cardiovascular diseases (CVDs) are increasing in recent years, and atherosclerosis (AS), a major CVD, becomes a disorder that afflicts human beings severely, especially the elders. AS is recognized as the primary cause and pathological basis of some other CVDs. The active constituents of Chinese herbal medicines have garnered increasing interest in recent researches owing to their influence on AS and other CVDs. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a naturally occurring anthraquinone derivative found in some Chinese herbal medicines such as Rhei radix et rhizome, Polygoni cuspidati rhizoma et radix and Polygoni multiflori root. In this paper, we first review the latest researches about emodin's pharmacology, metabolism and toxicity. Meanwhile, it has been shown to be effective in treating CVDs caused by AS in dozens of previous studies. Therefore, we systematically reviewed the mechanisms by which emodin treats AS. In summary, these mechanisms include anti-inflammatory activity, lipid metabolism regulation, anti-oxidative stress, anti-apoptosis and vascular protection. The mechanisms of emodin in other CVDs are also discussed, such as vasodilation, inhibition of myocardial fibrosis, inhibition of cardiac valve calcification and antiviral properties. We have further summarized the potential clinical applications of emodin. Through this review, we hope to provide guidance for clinical and preclinical drug development.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Medicamentos Herbarios Chinos , Emodina , Humanos , Anciano , Emodina/farmacología , Emodina/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Extractos Vegetales , Aterosclerosis/tratamiento farmacológico , Fitoquímicos
19.
J Environ Manage ; 333: 117441, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753893

RESUMEN

Water quality safety has attracted global attention and is closely related to the development of the social economy and human health. It is widely recognized that climate change and human activities significantly affect water quality changes. Therefore, quantifying the contributions of factors that drive long-term water quality changes is crucial for effective water quality management. Here, we built a climate-water quality assessment framework (CWQAF) based on climate-water quality response coefficients and trend analysis methods, to achieve this goal. Our results showed that the water quality improved significantly by 4.45%-20.54% from 2011 to 2020 in the Minjiang River basin (MRB). Human activities (including the construction of ecological projects, stricter discharge measures, etc.) were the main driving factors contributing 65%-77% of the improvement effect. Notably, there were differences in the contributions of human activities to water quality parameter changes, such as DO (increase (I): 0.12 mg/L, human contribution (HC): 66.8%), CODMn (decrease (D): 0.71 mg/L, HC: 67.2%), BOD5 (D: 1.10 mg/L, HC: 77.7%), CODCr (D: 4.20 mg/L, HC: 81.2%), TP (D: 0.13 mg/L,HC: 72.8%) and NH3-N (D: 0.40 mg/L, HC: 63.0%). Climate change explained 23%-35% of the variation in water quality. The water quality response to climate change was relatively significant with precipitation. For example, the downstream region was more susceptible to climate change than was the upstream region, as the downstream movement of precipitation centers strengthened the process of climatic factors affecting water quality changes in the MRB. Generally, although human activities were the main driving factor of water quality changes at the basin scale, the contribution of climate change could not be ignored. This study provided a manageable framework for the quantitative analysis of the influence of human activities and climate change on water quality to enable more precise and effective water quality management.


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Humanos , Monitoreo del Ambiente/métodos , Cambio Climático , Actividades Humanas , Ríos , China
20.
Front Pharmacol ; 14: 1082817, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733506

RESUMEN

Atherosclerosis (AS) is the main cause of cardiovascular disease (CVD) and is characterized by endothelial damage, lipid deposition, and chronic inflammation. Gut microbiota plays an important role in the occurrence and development of AS by regulating host metabolism and immunity. As human mitochondria evolved from primordial bacteria have homologous characteristics, they are attacked by microbial pathogens as target organelles, thus contributing to energy metabolism disorders, oxidative stress, and apoptosis. Therefore, mitochondria may be a key mediator of intestinal microbiota disorders and AS aggravation. Microbial metabolites, such as short-chain fatty acids, trimethylamine, hydrogen sulfide, and bile acids, also affect mitochondrial function, including mtDNA mutation, oxidative stress, and mitophagy, promoting low-grade inflammation. This further damages cellular homeostasis and the balance of innate immunity, aggravating AS. Herbal medicines and their monomers can effectively ameliorate the intestinal flora and their metabolites, improve mitochondrial function, and inhibit atherosclerotic plaques. This review focuses on the interaction between gut microbiota and mitochondria in AS and explores a therapeutic strategy for restoring mitochondrial function and intestinal microbiota disorders using herbal medicines, aiming to provide new insights for the prevention and treatment of AS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...