Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 142: 129-141, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527879

RESUMEN

The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands (CWs). The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies. In this paper, the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V. natans plants were measured at different initial ammonium concentrations. The results demonstrated that the total chlorophyll and soluble sugar synthesis of V. natans plants decreased by 51.45% and 57.16%, respectively, and malondialdehyde content increased threefold after 8 days if the initial NH4+-N concentration was more than 5 mg/L. Algal density, bacterial quantity, dissolved oxygen, and pH increased with high ammonium shocks. The average removal efficiencies of total nitrogen and NH4+-N reached 73.26% and 83.94%, respectively. The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria, Cyanobacteria, and Bacteroidetes increased. The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification (HNAD) bacteria expanded in biofilms. In particular, HNAD bacteria of Flavobacterium, Hydrogenophaga, Acidovorax, Acinetobacter, Pseudomonas, Aeromonas, and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V. natans plants. The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway. Thus, the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.


Asunto(s)
Compuestos de Amonio , Cianobacterias , Desnitrificación , Nitrógeno/análisis , Humedales , ARN Ribosómico 16S , Nitrificación , Biopelículas
2.
Sci Total Environ ; 914: 169666, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184255

RESUMEN

Biofilm is one of the important factors affecting nitrogen removal in constructed wetlands (CWs). However, the impact of submerged macrophyte on nitrogen conversion of biofilms on leaf of submerged macrophyte and matrix remains poorly understood. In this study, the CWs with Vallisneria natans and with artificial plant were established to investigate the effects of submerged macrophyte on nitrogen conversion and the composition of nitrogen-converting bacteria in leaf and matrix biofilms under high ammonium nitrogen (NH4+-N) loading. The 16S rRNA sequencing method was employed to explore the changes in bacterial communities in biofilms in CWs. The results showed that average removal rates of total nitrogen and NH4+-N in CW with V. natans reached 71.38% and 82.08%, respectively, representing increases of 24.19% and 28.79% compared with the control with artificial plant. Scanning electron microscope images indicated that high NH4+-N damaged the leaf cells of V. natans, leading to the cellular content release and subsequent increases of aqueous total organic carbon. However, the specific surface area and carrier function of V. natans were unaffected within 25 days. As a natural source of organic matters, submerged macrophyte provided organic matters for bacterial growth in biofilms. Bacterial composition analysis revealed the predominance of phylum Proteobacteria in CW with V. natans. The numbers of nitrifiers and denitrifiers in leaf biofilms reached 1.66 × 105 cells/g and 1.05 × 107 cells/g, as well as 2.79 × 105 cells/g and 7.41 × 107 cells/g in matrix biofilms, respectively. Submerged macrophyte significantly increased the population of nitrogen-converting bacteria and enhanced the expressions of nitrification genes (amoA and hao) and denitrification genes (napA, nirS and nosZ) in both leaf and matrix biofilms. Therefore, our study emphasized the influence of submerged macrophyte on biofilm functions and provided a scientific basis for nitrogen removal of biofilms in CWs.


Asunto(s)
Desnitrificación , Nitrógeno , Nitrógeno/análisis , Humedales , ARN Ribosómico 16S , Bacterias , Biopelículas
3.
Environ Sci Pollut Res Int ; 30(10): 25863-25872, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36348236

RESUMEN

Recently, electrolysis technology has been widely applied in nitrogen and phosphorus removal in river water due to its high efficiency, but its effects on aquatic animals, especially on their neurodevelopmental system, are still unclear. In this study, zebrafish (Danio rerio) embryos were used as model organisms and were put into an electrolytic reaction device with a Ti/IrO2/RuO2 mesh plate as the anode and a Ti mesh plate as the cathode to explore the effects of prolonged electrolysis on the nervous system. The neural development of zebrafish embryos was injured when the current density was greater than 0.89 A/m2. Compared with the control group, the movement speed of zebrafish larvae (120 h postfertilization, hpf) was significantly reduced from 65.48 ± 23.69 to 48.08 ± 22.73 mm/min in a dark environment with an electric current density of 0.89 A/m2 in the electrolysis group. In addition, the acetylcholinesterase activity of zebrafish larvae (120 hpf) gradually decreased from 7.60 ± 0.55 to 6.00 ± 0.01 U/mg prot and the dopamine concentration was reduced from 46.96 ± 0.85 to 40.86 ± 1.05 pg/mL with an electric current density from 0 to 0.89 A/m2 in the electrolysis groups. Furthermore, the expression of nerve-related genes (syn2a, mbp, nestin, and AChE) was significantly inhibited when the current density was more than 0.89 A/m2. However, there were few adverse effects on the neural development of zebrafish embryos when the current density was less than 0.86 A/m2. Thus, a current density of 0.86 A/m2 is a reference value to reduce the harm to the neural development of fish when electrolysis technology is used in river water pollutant treatment.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/genética , Acetilcolinesterasa/metabolismo , Electrólisis , Larva , Contaminantes Químicos del Agua/metabolismo , Embrión no Mamífero
4.
Environ Sci Pollut Res Int ; 28(18): 22832-22842, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33432406

RESUMEN

To enhance ammonia nitrogen (NH3-N) and phosphate (PO43--P) removal in hyper-eutrophic water, electrolysis-enhanced ecological floating bed (EEEFB) was designed with a Mg-Al alloy anode, a Ir-Ta-Ti metal oxide-coated titanium anode, and an Fe anode with the same graphite cathode. The results showed that the Mg-Al alloy anode with graphite cathode had a better ability to enhance NH3-N and PO43--P removal. When the current density was 0.37 mA·cm-2, the electrolysis time was 24 h/d, and the net removal rates of NH3-N and PO43--P were 62% and 99.4%, respectively. In winter, the purification efficiencies of NH3-N and PO43--P were as high as 7388.4 mg·m-2 and 4297.5 mg·m-2, respectively, by EEEFBs which were significantly higher than the traditional ecological floating bed (p < 0.05). Scanning electron microscopy (SEM) and X-ray spectrometry confirmed that the PO43--P was deposited in the sediment of EEEFBs with Mg-Al alloy anode and Fe anode.


Asunto(s)
Fósforo , Purificación del Agua , Electrólisis , Nitrógeno , Agua
5.
Environ Pollut ; 271: 116294, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33412452

RESUMEN

The abnormal elevation of cyanobacterial density and total phosphorus concentration after the reduction of exogenous pollutants in Lake Taihu is still an open question. An in-situ light-dark bottle method was used to investigate the spatiotemporal differences of phosphorus release potential of bloom-forming cyanobacteria (BFC) in Lake Taihu. Generalized additive model analysis (GAM) of field data revealed that the phosphorus release potential of BFC increased with the upregulation of Chlorophyll a (Chl-a) content per cell, which was further validated by the laboratory experiment results. We deduced that the accumulation of Chl-a content per cell might be an essential index of high phosphorus release potential of BFC. The phosphorus release potential of BFC was much higher in summer and autumn than that in spring and winter, while the phosphorus absorption potential increased with the rising of temperature. The distinct physiological status of BFC at different seasons brought about their variation in phosphorus release potential. Additionally, high phosphorus release potential of BFC region mainly concentrated in the eastern and the central, northwest, western, and the south of Lake Taihu in spring, summer, autumn, and winter, respectively. Further studies showed that the spatial differences in phosphorus release potential of BFC were most probably due to the horizontal drift of BFC driven by the prevailing wind. Collectively, the synergism of BFC's physiological status and horizontal drift determined the spatiotemporal differences of phosphorus release potential of BFC in Lake Taihu. Moreover, apparent spatiotemporal differences in phosphorus release potential of BFC were essential factors that induced the distinct distribution of total phosphorus in Lake Taihu. This study provides insight for exploring the reason for the constant increase of total dissolved phosphorus concentration and cyanobacterial density in Lake Taihu for the past 5 years.


Asunto(s)
Cianobacterias , Lagos , China , Clorofila A , Monitoreo del Ambiente , Eutrofización , Fósforo/análisis
6.
Sci Rep ; 10(1): 7619, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376920

RESUMEN

The new-type electrolysis-integrated ecological floating beds (EEFBs) were set up to study their water removal ability due to the excellent water treatment capacity of electrolysis, this enhanced EEFBs were made of polyethylene filled with biochar substrate and in middle of the substrate placed the Mg-Al alloy served as anode and graphite served as cathode. The results show that removal rates of total nitrogen (TN), ammonia nitrogen (NH3-N), total phosphorus (TP) and phosphate (PO43--P) by the EEFBs increased 53.1%, 96.5%, 76.5% and 74.5%, respectively. The electrolysis reaction was the main pathway for TN and TP removals in the EEFBs. A higher concentration of hydrogen autotrophic denitrification bacteria was recorded in the substrate of the EEFBs than that in the traditional ecological floating beds (EFBs) (p < 0.05), suggesting that the electrolysis may have enhanced the NO3--N removal efficiency of the EEFBs by promoting the growth and reproduce of hydrogen autotrophic denitrification bacteria. The in-situ formation of Mg2+ and Al3+ ions from a sacrificial Mg-Al alloy anode, caused PO43--P and other suspended matter flocculation, improved phosphorus removal and simultaneously reduced turbidity. Thus, electrolysis-integrated ecological floating bed has high nitrogen and phosphorus removal potential in eutrophic water.

7.
Int J Phytoremediation ; 21(10): 953-957, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30931579

RESUMEN

Aquatic plant treatment system (APTS) is a widely used sewage purification technique; however, it requires a large area of land due to its long hydraulic retention time. In order to improve the economic value of APTS in the treatment of rural sewage, an aquatic vegetables (lettuce) purification system strengthened with a set of supplemented lighting was evaluated. The effect of supplemented lighting of blue and red light on lettuce growth and sewage purification was studied by batch experiments. The results showed that the lettuce growth and the removal rates of pollutants were enhanced by supplemented lighting, of which red light is superior to blue light, and the increase of red light intensity further promoted the growth of lettuce and the removal rate of pollutants. Supplementary light is a suitable method which could improve the purification effect of APTS in most weather conditions especially in countries where day-night light patterns change substantially between winter and summer. The results would be useful for the APTS design for treating rural domestic sewage.


Asunto(s)
Lactuca , Aguas del Alcantarillado , Biodegradación Ambiental , Iluminación , Nutrientes , Verduras
8.
Water Sci Technol ; 77(5-6): 1683-1688, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29595170

RESUMEN

Aquatic plants are widely used for treating wastewater treatment plant secondary effluent. During this process, some residual activated sludge in the secondary effluent is intercepted and attaches to the plant roots. However, the effect of the attached activated sludge on nutrient removal in secondary effluent has up to now been unknown. Aiming at this problem, this investigation was conducted to compare the nutrient removal rates in secondary effluent by washed Pistia stratiotes (washed batch) and Pistia stratiotes with activated sludge attached to the roots (study batch). Extracellular polymeric substances (EPS) from the activated sludge attached to the roots were extracted and characterized by three-dimensional excitation emission matrix (3D-EEM) fluorescence spectroscopy. The results showed that the nutrient removal rates in the study batch were better than that in the washed batch. The 3D-EEM results showed that the protein content of EPS increased during the experiment, indicating the growth of microorganisms in the attached activated sludge. Our work demonstrated the enhanced effect of activated sludge attached to the roots of Pistia stratiotes on the removal of pollutants in secondary effluent, which is useful to guide the practical engineering of secondary effluent treatment.


Asunto(s)
Araceae/metabolismo , Raíces de Plantas/metabolismo , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/metabolismo , Polímeros/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Contaminantes Químicos del Agua/química , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA