Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2400261, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741451

RESUMEN

Intracranial implants for diagnosis and treatment of brain diseases have been developed over the past few decades. However, the platform of conventional implantable devices still relies on invasive probes and bulky sensors in conjunction with large-area craniotomy and provides only limited biometric information. Here, an implantable multi-modal sensor array that can be injected through a small hole in the skull and inherently spread out for conformal contact with the cortical surface is reported. The injectable sensor array, composed of graphene multi-channel electrodes for neural recording and electrical stimulation and MoS2-based sensors for monitoring intracranial temperature and pressure, is designed based on a mesh structure whose elastic restoring force enables the contracted device to spread out. It is demonstrated that the sensor array injected into a rabbit's head can detect epileptic discharges on the surface of the cortex and mitigate it by electrical stimulation while monitoring both intracranial temperature and pressure. This method provides good potential for implanting a variety of functional devices via minimally invasive surgery.

3.
Biosens Bioelectron ; 247: 115906, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101185

RESUMEN

Graphene has emerged as a highly promising nanomaterial for a variety of advanced technologies, including batteries, energy, electronics, and biotechnologies. Its recent contribution to neurotechnology is particularly noteworthy because its superior conductivity, chemical resilience, biocompatibility, thermal stability, and scalable nature make it well-suited for measuring brain activity and plasticity in health and disease. Graphene-mediated compounds are microfabricated in two central methods: chemical processes with natural graphite and chemical vapor deposition of graphene in a film form. They are widely used as biosensors and bioelectronics for neurodiagnostic and neurotherapeutic purposes in several brain disorders, such as Parkinson's disease, stroke, glioma, epilepsy, tinnitus, and Alzheimer's disease. This review provides an overview of studies that have demonstrated the technical advances of graphene nanomaterials in neuroscientific and clinical applications. We also discuss current limitations and future demands in relation to the clinical application of graphene, highlighting its potential technological and clinical significance for treating brain disorders. Our review underscores the potential of graphene nanomaterials as powerful tools for advancing the understanding of the brain and developing new therapeutic strategies.


Asunto(s)
Técnicas Biosensibles , Encefalopatías , Grafito , Nanoestructuras , Humanos , Grafito/química , Nanoestructuras/química , Biotecnología
4.
Diabetes Metab J ; 47(6): 784-795, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37915185

RESUMEN

BACKGRUOUND: Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are currently used to treat patients with diabetes. Previous studies have demonstrated that treatment with SGLT-2 inhibitors is accompanied by altered metabolic phenotypes. However, it has not been investigated whether the hypothalamic circuit participates in the development of the compensatory metabolic phenotypes triggered by the treatment with SGLT-2 inhibitors. METHODS: Mice were fed a standard diet or high-fat diet and treated with dapagliflozin, an SGLT-2 inhibitor. Food intake and energy expenditure were observed using indirect calorimetry system. The activity of hypothalamic neurons in response to dapagliflozin treatment was evaluated by immunohistochemistry with c-Fos antibody. Quantitative real-time polymerase chain reaction was performed to determine gene expression patterns in the hypothalamus of dapagliflozin-treated mice. RESULTS: Dapagliflozin-treated mice displayed enhanced food intake and reduced energy expenditure. Altered neuronal activities were observed in multiple hypothalamic nuclei in association with appetite regulation. Additionally, we found elevated immunosignals of agouti-related peptide neurons in the paraventricular nucleus of the hypothalamus. CONCLUSION: This study suggests the functional involvement of the hypothalamus in the development of the compensatory metabolic phenotypes induced by SGLT-2 inhibitor treatment.


Asunto(s)
Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Ratones , Animales , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Hipotálamo/metabolismo , Glucosa/metabolismo , Fenotipo , Neuronas/metabolismo , Sodio/metabolismo
5.
J Vis Exp ; (200)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37929971

RESUMEN

Cortical maps represent the spatial organization of location-dependent neural responses to sensorimotor stimuli in the cerebral cortex, enabling the prediction of physiologically relevant behaviors. Various methods, such as penetrating electrodes, electroencephalography, positron emission tomography, magnetoencephalography, and functional magnetic resonance imaging, have been used to obtain cortical maps. However, these methods are limited by poor spatiotemporal resolution, low signal-to-noise ratio (SNR), high costs, and non-biocompatibility or cause physical damage to the brain. This study proposes a graphene array-based somatosensory mapping method as a feature of electrocorticography that offers superior biocompatibility, high spatiotemporal resolution, desirable SNR, and minimized tissue damage, overcoming the drawbacks of previous methods. This study demonstrated the feasibility of a graphene electrode array for somatosensory mapping in rats. The presented protocol can be applied not only to the somatosensory cortex but also to other cortices such as the auditory, visual, and motor cortex, providing advanced technology for clinical implementation.


Asunto(s)
Grafito , Ratas , Animales , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Electrodos , Imagen por Resonancia Magnética , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/fisiología
6.
Prog Neurobiol ; 231: 102543, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924858

RESUMEN

Tinnitus induced by hearing loss is caused primarily by irreversible damage to the peripheral auditory system, which results in abnormal neural responses and frequency map disruption in the central auditory system. It remains unclear whether and how electrical rehabilitation of the auditory cortex can alleviate tinnitus. We hypothesize that stimulation of the cortical surface can alleviate tinnitus by enhancing neural responses and promoting frequency map reorganization. To test this hypothesis, we assessed and activated cortical maps using our newly designed graphene-based electrode array with a noise-induced tinnitus animal model. We found that cortical surface stimulation increased cortical activity, reshaped sensory maps, and alleviated hearing loss-induced tinnitus behavior in adult mice. These effects were likely due to retained long-term synaptic potentiation capabilities, as shown in cortical slices from the mice model. These findings suggest that cortical surface activation can be used to facilitate practical functional recovery from phantom percepts induced by sensory deprivation. They also provide a working principle for various treatment methods that involve electrical rehabilitation of the cortex.


Asunto(s)
Corteza Auditiva , Pérdida Auditiva , Acúfeno , Ratones , Animales , Acúfeno/terapia , Modelos Animales de Enfermedad , Mapeo Encefálico/métodos , Plasticidad Neuronal/fisiología
7.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834616

RESUMEN

Molecular profiling of the hypothalamus in response to metabolic shifts is a critical cue to better understand the principle of the central control of whole-body energy metabolism. The transcriptional responses of the rodent hypothalamus to short-term calorie restriction have been documented. However, studies on the identification of hypothalamic secretory factors that potentially contribute to the control of appetite are lacking. In this study, we analyzed the differential expression of hypothalamic genes and compared the selected secretory factors from the fasted mice with those of fed control mice using bulk RNA-sequencing. We verified seven secretory genes that were significantly altered in the hypothalamus of fasted mice. In addition, we determined the response of secretory genes in cultured hypothalamic cells to treatment with ghrelin and leptin. The current study provides further insights into the neuronal response to food restriction at the molecular level and may be useful for understanding the hypothalamic control of appetite.


Asunto(s)
Hipotálamo , Inanición , Ratones , Animales , Hipotálamo/metabolismo , Leptina/metabolismo , Inanición/metabolismo , Apetito/fisiología , Ayuno/fisiología , Ghrelina/metabolismo , Perfilación de la Expresión Génica
8.
STAR Protoc ; 4(1): 102030, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36633949

RESUMEN

Longitudinal synaptic connections between dentate gyrus (DG) granule neurons in the hippocampus have been found to be correlated with increased anxiety. Here, we present a protocol to assess synaptic connectivity and plasticity in the longitudinal DG network. We detail the steps for (1) obtaining acute mouse hippocampal slices that contain longitudinal DG-DG connections, (2) measuring excitatory postsynaptic potentials using whole-cell patch clamp recording combined with two-photon microscopy and glutamate uncaging, and (3) assessing synaptic plasticity using extracellular field recording. For complete details on the use and execution of this protocol, please refer to Pak et al. (2022).1.


Asunto(s)
Giro Dentado , Hipocampo , Ratones , Animales , Hipocampo/fisiología , Neuronas/fisiología , Plasticidad Neuronal/fisiología , Ácido Glutámico
9.
Mol Metab ; 66: 101636, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36375792

RESUMEN

OBJECTIVE: Thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is predominantly expressed in discrete areas of the hypothalamus, which acts as the central unit for the regulation of whole-body energy homeostasis. Current study designed to identify the roles of TTF-1 on the responsiveness of the hypothalamic circuit activity to circulating leptin and the development of obesity linked to the insensitivity of leptin. METHODS: We generated conditional knock-out mice by crossing TTF-1flox/flox mice with leptin receptor (ObRb)Cre or proopiomelanocortin (POMC)Cre transgenic mice to interrogate the contributions of TTF-1 in leptin signaling and activity. Changes of food intake, body weight and energy expenditure were evaluated in standard or high fat diet-treated transgenic mice by using an indirect calorimetry instrument. Molecular mechanism was elucidated with immunohistochemistry, immunoblotting, quantitative PCR, and promoter assays. RESULTS: The selective deletion of TTF-1 gene expression in cells expressing the ObRb or POMC enhanced the anorexigenic effects of leptin as well as the leptin-induced phosphorylation of STAT3. We further determined that TTF-1 inhibited the transcriptional activity of the ObRb gene. In line with these findings, the selective deletion of the TTF-1 gene in ObRb-positive cells led to protective effects against diet-induced obesity via the amelioration of leptin resistance. CONCLUSIONS: Collectively, these results suggest that hypothalamic TTF-1 participates in the development of obesity as a molecular component involved in the regulation of cellular leptin signaling and activity. Thus, TTF-1 may represent a therapeutic target for the treatment, prevention, and control of obesity.


Asunto(s)
Leptina , Proopiomelanocortina , Factor Nuclear Tiroideo 1 , Animales , Ratones , Hipotálamo/metabolismo , Leptina/genética , Leptina/metabolismo , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Proopiomelanocortina/metabolismo , Factor Nuclear Tiroideo 1/genética , Factor Nuclear Tiroideo 1/metabolismo
10.
J Cell Physiol ; 237(11): 4037-4048, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36063532

RESUMEN

The hippocampus is regarded as a cognition hub, particularly for learning and memory. Previously, neuronal mechanisms underlying various cognitive functions are delineated with the lamellar hippocampal circuitry, dentate gyrus-CA3 or CA2-CA1, within the transverse plane. More recently, interlamellar (often referred to as longitudinal) projections have received intensive attention to help understand signal convergence and divergence in cognition and behavior. Signal propagation along the longitudinal axis is evidenced by axonal arborization patterns and synaptic responses to electro- and photo-stimulation, further demonstrating that information flow is more enriched in the longitudinal plane than the transverse plane. Here, we review the significance of longitudinal connections for cognition, discuss a putative circuit mechanism of place coding, and suggest the reconceptualization of the hippocampal circuitry.


Asunto(s)
Conectoma , Hipocampo , Neuronas/fisiología , Aprendizaje
11.
iScience ; 25(6): 104364, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35620435

RESUMEN

Anxiety is characteristic comorbidity of noise-induced hearing loss (NIHL), which causes physiological changes within the dentate gyrus (DG), a subfield of the hippocampus that modulates anxiety. However, which DG circuit underlies hearing loss-induced anxiety remains unknown. We utilize an NIHL mouse model to investigate short- and long-term synaptic plasticity in DG networks. The recently discovered longitudinal DG-DG network is a collateral of DG neurons synaptically connected with neighboring DG neurons and displays robust synaptic efficacy and plasticity. Furthermore, animals with NIHL demonstrate increased anxiety-like behaviors similar to a response to chronic restraint stress. These behaviors are concurrent with enhanced synaptic responsiveness and suppressed short- and long-term synaptic plasticity in the longitudinal DG-DG network but not in the transverse DG-CA3 connection. These findings suggest that DG-related anxiety is typified by synaptic alteration in the longitudinal DG-DG network.

12.
Sci Adv ; 8(15): eabm6693, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35417247

RESUMEN

Thermal imaging provides information regarding the general condition of the human body and facilitates the diagnosis of various diseases. Heat therapy or thermotherapy can help in the treatment of injuries to the skin tissue. Here, we report a wearable thermal patch with dual functions of continuous skin temperature sensing and thermotherapy for effective self-care treatment. This system consists of a graphene-based capacitive sensor, a graphene thermal pad, and a flexible readout board with a wireless communication module. The wearable sensor continuously monitors the temperature variation over a large area of the skin (3 × 3cm2) with high resolution and sensitivity and performs thermotherapy via the graphene-based heater mounted at the bottom of the device. Animal studies prove that the proposed system can be used to diagnose various diseases. This technology could be useful in the development of convenient and wearable health care devices.

13.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269751

RESUMEN

The hypothalamic arcuate nucleus (Arc) is a central unit that controls the appetite through the integration of metabolic, hormonal, and neuronal afferent inputs. Agouti-related protein (AgRP), proopiomelanocortin (POMC), and dopaminergic neurons in the Arc differentially regulate feeding behaviors in response to hunger, satiety, and appetite, respectively. At the time of writing, the anatomical and electrophysiological characterization of these three neurons has not yet been intensively explored. Here, we interrogated the overall characterization of AgRP, POMC, and dopaminergic neurons using genetic mouse models, immunohistochemistry, and whole-cell patch recordings. We identified the distinct geographical location and intrinsic properties of each neuron in the Arc with the transgenic lines labelled with cell-specific reporter proteins. Moreover, AgRP, POMC, and dopaminergic neurons had different firing activities to ghrelin and leptin treatments. Ghrelin led to the increased firing rate of dopaminergic and AgRP neurons, and the decreased firing rate of POMC. In sharp contrast, leptin resulted in the decreased firing rate of AgRP neurons and the increased firing rate of POMC neurons, while it did not change the firing rate of dopaminergic neurons in Arc. These findings demonstrate the anatomical and physiological uniqueness of three hypothalamic Arc neurons to appetite control.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Proopiomelanocortina , Proteína Relacionada con Agouti/genética , Animales , Apetito , Núcleo Arqueado del Hipotálamo/metabolismo , Ghrelina/metabolismo , Ghrelina/farmacología , Leptina/metabolismo , Ratones , Neuronas/metabolismo , Proopiomelanocortina/genética
14.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805094

RESUMEN

Tristetraprolin (TTP), an RNA-binding protein, controls the stability of RNA by capturing AU-rich elements on their target genes. It has recently been identified that TTP serves as an anti-inflammatory protein by guiding the unstable mRNAs of pro-inflammatory proteins in multiple cells. However, it has not yet been investigated whether TTP affects the inflammatory responses in the hypothalamus. Since hypothalamic inflammation is tightly coupled to the disturbance of energy homeostasis, we designed the current study to investigate whether TTP regulates hypothalamic inflammation and thereby affects energy metabolism by utilizing TTP-deficient mice. We observed that deficiency of TTP led to enhanced hypothalamic inflammation via stimulation of a variety of pro-inflammatory genes. In addition, microglial activation occurred in the hypothalamus, which was accompanied by an enhanced inflammatory response. In line with these molecular and cellular observations, we finally confirmed that deficiency of TTP results in elevated core body temperature and energy expenditure. Taken together, our findings unmask novel roles of hypothalamic TTP on energy metabolism, which is linked to inflammatory responses in hypothalamic microglial cells.


Asunto(s)
Hipertermia/genética , Hipotálamo/patología , Microglía/metabolismo , Tristetraprolina/deficiencia , Elementos Ricos en Adenilato y Uridilato , Animales , Temperatura Corporal , Peso Corporal , Citocinas/metabolismo , Homeostasis , Inflamación , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Estabilidad del ARN , ARN Mensajero/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
15.
J Physiol ; 599(8): 2273-2281, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33675053

RESUMEN

KEY POINTS: Axon collaterals of DG granule neurons project towards neighbouring DG granule cell layer Longitudinal axons in the DG-DG circuit possess denser synapses than transverse axons in the DG-CA3 circuit The size of varicosities of the longitudinal axons, but not transverse ones, is regulated by seizures as measured behaviourally Varicosity size of DG-DG axons can be a symptomatic marker of DG-related brain diseases ABSTRACT: The hippocampus network has captured the attention of neuroscientists as a model for understanding cognition and behaviour. Previously, we have identified interlamellar, namely longitudinal, axons between CA1 pyramidal neurons analogous to recurrent connections between CA3 pyramidal neurons. Currently it is unknown whether longitudinal axons of DG granule neurons are present and how they are associated with the behavioural symptoms of seizure. We found longitudinal axons projections from DG granule cells extending to neighbouring DG granule cell layers. These DG-DG axons have more numerous varicosities and are thinner than the DG-CA3 axons, suggesting heavy synaptic formation along a longitudinal axis. Furthermore, the size of varicosities in the DG-DG but not DG-CA3 axons is regulated by seizures as measured behaviourally. The results suggest that the dynamics of longitudinal DG axons is a symptomatic marker of DG-related brain diseases.


Asunto(s)
Axones , Hipocampo , Giro Dentado , Humanos , Convulsiones , Sinapsis
16.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557390

RESUMEN

Adiponectin, an adipose tissue-derived hormone, plays integral roles in lipid and glucose metabolism in peripheral tissues, such as the skeletal muscle, adipose tissue, and liver. Moreover, it has also been shown to have an impact on metabolic processes in the central nervous system. Astrocytes comprise the most abundant cell type in the central nervous system and actively participate in metabolic processes between blood vessels and neurons. However, the ability of adiponectin to control nutrient metabolism in astrocytes has not yet been fully elucidated. In this study, we investigated the effects of adiponectin on multiple metabolic processes in hypothalamic astrocytes. Adiponectin enhanced glucose uptake, glycolytic processes and fatty acid oxidation in cultured primary hypothalamic astrocytes. In line with these findings, we also found that adiponectin treatment effectively enhanced synthesis and release of monocarboxylates. Overall, these data suggested that adiponectin triggers catabolic processes in astrocytes, thereby enhancing nutrient availability in the hypothalamus.


Asunto(s)
Adiponectina/metabolismo , Astrocitos/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Nutrientes/metabolismo , Adiponectina/genética , Animales , Astrocitos/citología , Metabolismo Energético , Femenino , Glucólisis , Hipotálamo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción
17.
Nat Commun ; 11(1): 6072, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247086

RESUMEN

Development of a human-interactive display enabling the simultaneous sensing, visualisation, and memorisation of a magnetic field remains a challenge. Here we report a skin-patchable magneto-interactive electroluminescent display, which is capable of sensing, visualising, and storing magnetic field information, thereby enabling 3D motion tracking. A magnetic field-dependent conductive gate is employed in an alternating current electroluminescent display, which is used to produce non-volatile and rewritable magnetic field-dependent display. By constructing mechanically flexible arrays of magneto-interactive displays, a spin-patchable and pixelated platform is realised. The magnetic field varying along the z-axis enables the 3D motion tracking (monitoring and memorisation) on 2D pixelated display. This 3D motion tracking display is successfully used as a non-destructive surgery-path guiding, wherein a pathway for a surgical robotic arm with a magnetic probe is visualised and recorded on a display patched on the abdominal skin of a rat, thereby helping the robotic arm to find an optimal pathway.


Asunto(s)
Electricidad , Imagenología Tridimensional , Luminiscencia , Campos Magnéticos , Movimiento (Física) , Animales , Electrodos , Masculino , Ratas Sprague-Dawley , Volatilización
18.
Sci Rep ; 10(1): 15813, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978417

RESUMEN

The gravity is necessary for living organisms to operate various biological events including hippocampus-related functions of learning and memory. Until now, it remains inconclusive how altered gravity is associated with hippocampal functions. It is mainly due to the difficulties in generating an animal model experiencing altered gravity. Here, we demonstrate the effects of hypergravity on hippocampus-related functions using an animal behavior and electrophysiology with our hypergravity animal model. The hypergravity (4G, 4 weeks) group showed impaired synaptic efficacy and long-term potentiation in CA1 neurons of the hippocampus along with the poor performance of a novel object recognition task. Our studies suggest that altered gravity affects hippocampus-related cognitive functions, presumably through structural and functional adaptation to various conditions of gravity shift.


Asunto(s)
Conducta Animal , Encéfalo/patología , Hipergravedad/efectos adversos , Plasticidad Neuronal , Neuronas/patología , Reconocimiento en Psicología , Percepción Visual , Animales , Hipocampo/patología , Potenciación a Largo Plazo , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
19.
Biochem Biophys Rep ; 23: 100794, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32885054

RESUMEN

Occurrence of obesity during the postmenopausal period is closely associated with inflammatory processes in multiple peripheral organs that are metabolically active. Hypothalamic inflammation has been recognized as one of the major underlying causes of various metabolic disorders, including obesity. The association between menopause-related obesity and hypothalamic inflammation remains poorly understood. We observed an elevation in hypothalamic inflammation in the ovariectomized mice, which displayed altered metabolic phenotypes and visceral obesity. Furthermore, we confirmed that ovariectomized mice displayed microglial activation accompanied by the upregulation of multiple genes involved in the inflammatory responses in hypothalamic microglia. Collectively, the current findings suggest that hypothalamic inflammation associated with microglial functioning could be a major pathogenic element in disruption of energy homeostasis during the postmenopausal period.

20.
Molecules ; 25(14)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664475

RESUMEN

Degenerative diseases, which can develop during aging, are underlined by inflammatory processes. Hypothalamic inflammation triggered by elevation in circulating fatty acid levels is directly coupled to metabolic disorders. The present study aimed to investigate and characterize the hypothalamic inflammation and composition of fatty acids in the hypothalami of aged mice. We verified that inflammation and microglial activation occur in the hypothalami of aged mice by performing quantitative real-time PCR and using immunohistochemistry methods. In addition, we observed increased levels of various saturated fatty acids in the hypothalami of aged mice, whereas no major changes in the levels of circulating fatty acids were detected using gas chromatography with a flame ionization detector. Collectively, our current findings suggest that increases in saturated fatty acid levels are coupled to hypothalamic inflammation and thereby cause perturbations in energy metabolism during the aging process.


Asunto(s)
Envejecimiento , Ácidos Grasos/química , Hipotálamo , Inflamación/patología , Microglía , Envejecimiento/patología , Animales , Metabolismo Energético , Hipotálamo/química , Hipotálamo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/química , Microglía/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...