Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-37259427

RESUMEN

Oral delivery has become the route of choice among all other types of drug administrations. However, typical chronic disease drugs are often poorly water-soluble, have low dissolution rates, and undergo first-pass metabolism, ultimately leading to low bioavailability and lack of efficacy. The lipid-based formulation offers tremendous benefits of using versatile excipients and has great compatibility with all types of dosage forms. Self-microemulsifying drug delivery system (SMEDDS) promotes drug self-emulsification in a combination of oil, surfactant, and co-surfactant, thereby facilitating better drug solubility and absorption. The feasible preparation of SMEDDS creates a promising strategy to improve the drawbacks of lipophilic drugs administered orally. Selecting a decent mixing among these components is, therefore, of importance for successful SMEDDS. Quality by Design (QbD) brings a systematic approach to drug development, and it offers promise to significantly improve the manufacturing quality performance of SMEDDS. Furthermore, it could be benefited efficiently by conducting pre-formulation studies integrated with the statistical design of experiment (DoE). In this review, we highlight the recent findings for the development of microemulsions and SMEDDS by using DoE methods to optimize the formulations for drugs in different excipients with controllable ratios. A brief overview of DoE concepts is discussed, along with its technical benefits in improving SMEDDS formulations.

2.
Pharmaceutics ; 14(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35335854

RESUMEN

Due to the increasing rate of drug resistance in Candida spp., higher doses of antifungal agents are being used resulting in toxicity. Drug delivery systems have been shown to provide an effective approach to enhance the efficacy and reduce the toxicity of antifungal agents. Oleic acid was revealed to effectively inhibit biofilm formation, hence reducing the virulence of Candida albicans. In this study, oleic acid-based self micro-emulsifying delivery systems (OA-SMEDDS) were developed for delivering clotrimazole (CLT). Based on the pseudo-ternary phase diagram and loading capacity test, the optimal ratio of OA-SMEDDS with CLT was selected. CLT-loaded OA-SMEDDS not only bears a higher drug loading capacity but also maintains good storage stability. The minimum inhibitory concentration (MIC50) of CLT-loaded OA-SMEDDS (0.01 µg/mL) in Candida albicans was significantly lower than that of CLT dissolved in DMSO (0.04 µg/mL). Moreover, we showed CLT-loaded OA-SMEDDS could effectively prevent biofilm formation and destroy the intact biofilm structure of Candida albicans. Furthermore, a CLT-loaded OA-SMEDDS gel was developed and evaluated for its antifungal properties. Disk diffusion assay indicated that both CLT-loaded OA-SMEDDS and CLT-loaded OA-SMEDDS gels were more effective than commercially available products in inhibiting the wild-type and drug-resistant species of Candida.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA