Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 13(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534420

RESUMEN

E. sinensis is an animal model for studying the reproduction and development of crustaceans. In this study, we knocked down the Es-Kif2a gene by injecting dsRNA into E. sinensis and inhibited Es-Plk1 gene expression by injecting PLK1 inhibitor BI6727 into E. sinensis. Then, the cell proliferation level, apoptosis level, and PI3K/AKT signaling expression level were detected. Our results showed that the proliferation level of spermatogenic cells decreased, while the apoptosis level increased after Es-Kif2a knockdown or Es-Plk1 inhibition. In order to verify whether these changes are caused by regulating the PI3K/AKT pathway, we detected the expression of PI3K and AKT proteins after Es-Kif2a knockdown or Es-Plk1 inhibition. Western Blot showed that in both the Es-Kif2a knockdown group and the Es-Plk1 inhibition group, the expression of PI3K and AKT proteins decreased. In addition, immunofluorescence showed that Es-KIF2A and Es-PLK1 proteins were co-localized during E. sinensis spermatogenesis. To further explore the upstream and downstream relationship between Es-KIF2A and Es-PLK1, we detected the expression level of Es-PLK1 after Es-Kif2a knockdown as well as the expression level of Es-KIF2A after Es-Plk1 inhibition. Western Blot showed that the expression of Es-PLK1 decreased after Es-Kif2a knockdown, while there was no significant change of Es-KIF2A after Es-Plk1 inhibition, indicating that Es-PLK1 may be a downstream factor of Es-KIF2A. Taken together, these results suggest that Es-KIF2A upregulates the PI3K/AKT signaling pathway through Es-PLK1 during the spermatogenesis of E. sinensis, thereby affecting the proliferation and apoptosis levels of spermatogenic cells.

2.
Int J Biol Macromol ; 248: 125842, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37454996

RESUMEN

The myosin motor protein myosin VI plays an essential role in mammalian spermatogenesis, however, the effects of myosin VI on male reproduction in Crustacea remain obscure. We identified the macromolecule es-Myosin VI in Eriocheir sinensis, and studied it by multiple methods. It co-localized with F-actin and was highly expressed in the testis. We interfered es-Myosin VI using dsRNA in vivo, an apparent decrease in spermatozoa count was detected. We also found that the MAPK signalling pathway was changed, subsequently causing disruption of intercellular junctions and damage to the functional hemolymph-testis barrier. We observed that luteinizing hormone receptor es-LHR was located within seminiferous tubules, which was different from the expression in mammals. Es-LHR could bind with es-Myosin VI in testis of E. sinensis, its localization was significantly altered when es-Myosin VI was deleted. Moreover, we obtained consistent results for the MAPK signalling pathway and spermatogenesis defects between the es-LHR and es-Myosin VI knockdown groups. In summary, our research demonstrated that knockdown of es-Myosin VI disturbed the intercellular junction and HTB function via the MAPK signalling pathway by changing the localization of es-LHR in the testis of E. sinensis, which was the potential reason for its negative impact on spermatogenesis.


Asunto(s)
Braquiuros , Testículo , Animales , Masculino , Testículo/metabolismo , Espermatogénesis , Espermatozoides , Uniones Intercelulares , Braquiuros/genética , Mamíferos
3.
Environ Pollut ; 331(Pt 2): 121952, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37270048

RESUMEN

Recent findings found that TiO2 nanoparticles (TiO2-NPs) have male reproductive toxicity. However, few reports have studied the toxicity of TiO2-NPs in crustaceans. In this study, we first chose the freshwater crustacean Eriocheir sinensis (E. sinensis) to explore the male toxicity of TiO2-NP exposure and the underlying mechanisms. Three nm and 25 nm TiO2-NPs at a dose of 30 mg/kg bw induced apoptosis and damaged the integrity of the haemolymph-testis-barrier (HTB, a structure similar to the blood-testis-barrier) and the structure of the seminiferous tubule. The 3-nm TiO2-NPs caused more severe spermatogenesis dysfunction than the 25-nm TiO2-NPs. We initially confirmed that TiO2-NP exposure affected the expression patterns of adherens junctions (α-catenin and ß-catenin) and induced tubulin disorganization in the testis of E. sinensis. TiO2-NP exposure caused reactive oxygen species (ROS) generation and an imbalance of mTORC1-mTORC2 (mTORC1/rps6/Akt levels were increased, while mTORC2 activity was not changed). After using the ROS scavenger NAC to inhibit ROS generation, both the mTORC1-mTORC2 imbalance and alterations in AJs were rescued. More importantly, the mTORC1 inhibitor rapamycin abolished mTORC1/rps6/Akt hyperactivation and partially restored the alterations in AJs and tubulin. Collectively, the mTORC1-mTORC2 imbalance induced by TiO2-NPs was involved in the mechanism of AJ and HTB disruption, resulting in spermatogenesis in E. sinensis.


Asunto(s)
Nanopartículas , Testículo , Masculino , Humanos , Testículo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tubulina (Proteína)/metabolismo , Uniones Adherentes/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Espermatogénesis/fisiología , Titanio/toxicidad , Titanio/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Nanopartículas/toxicidad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo
4.
Cell Tissue Res ; 393(3): 559-575, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37328709

RESUMEN

Mammalian target of rapamycin (mTOR) is a crucial signaling protein regulating a range of cellular events. Numerous studies have reported that the mTOR pathway is related to spermatogenesis in mammals. However, its functions and underlying mechanisms in crustaceans remain largely unknown. mTOR exists as two multimeric functional complexes termed mTOR complex 1 (mTORC1) and mTORC2. Herein, we first cloned ribosomal protein S6 (rpS6, a downstream molecule of mTORC1) and protein kinase C (PKC, a downstream effector of mTORC2) from the testis of Eriocheir sinensis. The dynamic localization of rpS6 and PKC suggested that both proteins may be essential for spermatogenesis. rpS6/PKC knockdown and Torin1 treatment led to defects in spermatogenesis, including germ cell loss, retention of mature sperm and empty lumen formation. In addition, the integrity of the testis barrier (similar to the blood-testis barrier in mammals) was disrupted in the rpS6/PKC knockdown and Torin1 treatment groups, accompanied by changing in expression and distribution of junction proteins. Further study demonstrated that these findings may result from the disorganization of filamentous actin (F-actin) networks, which were mediated by the expression of actin-related protein 3 (Arp3) rather than epidermal growth factor receptor pathway substrate 8 (Eps8). In summary, our study illustrated that mTORC1/rpS6 and mTORC2/PKC regulated spermatogenesis via Arp3-mediated actin microfilament organization in E. sinensis.


Asunto(s)
Semen , Transducción de Señal , Animales , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Semen/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Espermatogénesis/fisiología , Citoesqueleto de Actina/metabolismo , Barrera Hematotesticular/metabolismo , Mamíferos/metabolismo
5.
Int J Biol Macromol ; 242(Pt 3): 124867, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201886

RESUMEN

ß-CATENIN is an evolutionarily conserved multifunctional molecule that maintains cell adhesion as a cell junction protein to safeguard the integrity of the mammalian blood-testes barrier, and also regulates cell proliferation and apoptosis as a key signaling molecule in the WNT/ß-CATENIN signaling pathway. In the crustacean Eriocheir sinensis, Es-ß-CATENIN has been shown to be involved in spermatogenesis, but the testes of E. sinensis have large and well-defined structural differences from those of mammals, and the impact of Es-ß-CATENIN in them is still unknown. In the present study, we found that Es-ß-CATENIN, Es-α-CATENIN and Es-ZO-1 interact differently in the testes of the crab compared to mammals. In addition, defective Es-ß-CATENIN resulted in increased Es-α-CATENIN protein expression levels, distorted and deformed F-ACTIN, and disturbed localization of Es-α-CATENIN and Es-ZO-1, leading to loss of hemolymph-testes barrier integrity and impaired sperm release. In addition to this, we also performed the first molecular cloning and bioinformatics analysis of Es-AXIN in the WNT/ß-CATENIN pathway to exclude the effect of the WNT/ß-CATENIN pathway on the cytoskeleton. In conclusion, Es-ß-CATENIN participates in maintaining the hemolymph-testes barrier in the spermatogenesis of E. sinensis.


Asunto(s)
Braquiuros , Testículo , Animales , Masculino , Testículo/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , alfa Catenina/metabolismo , Braquiuros/metabolismo , Hemolinfa/metabolismo , Semen/metabolismo , Espermatogénesis , Citoesqueleto/metabolismo , Uniones Intercelulares/metabolismo , Mamíferos/metabolismo
6.
Tissue Cell ; 81: 102028, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36709695

RESUMEN

Spermatogenesis is a complicated process that includes spermatogonia differentiation, spermatocytes meiosis, spermatids spermiogenesis and final release of spermatozoa. Actin-related protein 3 (Arp3) and epidermal growth factor receptor pathway substrate 8 (Eps8) are two actin binding proteins that regulate cell adhesion in seminiferous tubules during mammalian spermatogenesis. However, the functions of these two proteins during spermatogenesis in nonmammalian species, especially Crustacea, are still unknown. Here, we cloned es-Arp3 and es-Eps8 from the testis of Chinese mitten crab Eriocheir sinensis. es-Arp3 and es-Eps8 were located in spermatocytes, spermatids and spermatozoa. Knockdown of es-Arp3 and es-Eps8 in vivo caused morphological changes to seminiferous tubules including delayed spermatozoa release, shedding of germ cells and vacuoles. Filamentous-actin (F-actin) filaments network was disorganized due to deficiency of es-Arp3 and es-Eps8. Accompanying this, four junctional proteins (α-catenin, ß-catenin, pinin and ZO1) displayed abnormal expression levels as well as penetrating biotin signals in seminiferous tubules. We also used the Arp2/3 complex inhibitor CK666 to block es-Arp3 activity and supported es-Arp3 knockdown results. In summary, our study demonstrated for the first time that es-Arp3 and es-Eps8 are important for spermatogenesis via regulating microfilament-mediated cell adhesion in Eriocheir sinensis.


Asunto(s)
Barrera Hematotesticular , Espermatogénesis , Animales , Masculino , Proteína 3 Relacionada con la Actina/metabolismo , Barrera Hematotesticular/metabolismo , Espermatogénesis/fisiología , Testículo , Espermátides , Túbulos Seminíferos/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Microfilamentos/metabolismo , Mamíferos/metabolismo
7.
DNA Cell Biol ; 42(1): 1-13, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36399409

RESUMEN

Cell adhesion and stable signaling regulation are fundamental ways of maintaining homeostasis. Among them, the Wnt/ß-CATENIN signaling plays a key role in embryonic development and maintenance of body dynamic homeostasis. At the same time, the key signaling molecule ß-CATENIN in the Wnt signaling can also function as a cytoskeletal linker protein to regulate tissue barriers, cell migration, and morphogenesis. Dysregulation of the balance between Wnt signaling and adherens junctions can lead to disease. How ß-CATENIN maintains the independence of these two functions, or mediates the interaction and balance of these two functions, has been explored and debated for a long time. In this study, we will focus on five aspects of ß-CATENIN chaperone molecules, phosphorylation of ß-CATENIN and related proteins, epithelial mesenchymal transition, ß-CATENIN homolog protein γ-CATENIN and disease, thus deepening the understanding of the Wnt/ß-CATENIN signaling and the homeostasis between cell adhesion and further addressing related disease problems.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , beta Catenina/metabolismo , Adhesión Celular , Vía de Señalización Wnt/fisiología , Movimiento Celular , Fosforilación
8.
Histol Histopathol ; 38(1): 9-28, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35880756

RESUMEN

There are two kinds of toxins in sea anemones: neurotoxins and pore forming toxins. As a representative of the sodium channel toxin, the neurotoxin ATX II in neurotoxin mainly affects the process of action potential and the release of transmitter to affect the inactivation of the sodium channel. As the representatives of potassium channel toxins, BgK and ShK mainly affect the potassium channel current. EqTx and Sticholysins are representative of pore forming toxins, which can form specific ion channels in cell membranes and change the concentration of internal and external ions, eventually causing hemolytic effects. Based on the above mechanism, toxins such as ATX II can also cause toxic effects in tissues and organs such as heart, lung and muscle. As an applied aspect it was shown that sea anemone toxins often have strong toxic effects on tumor cells, induce cancer cells to enter the pathway of apoptosis, and can also bind to monoclonal antibodies or directly inhibit relevant channels for the treatment of autoimmune diseases.


Asunto(s)
Neurotoxinas , Anémonas de Mar , Animales , Neurotoxinas/toxicidad , Neurotoxinas/metabolismo , Anémonas de Mar/metabolismo , Canales de Sodio/metabolismo , Canales de Sodio/farmacología , Canales de Potasio/metabolismo , Canales de Potasio/farmacología , Membrana Celular/metabolismo
9.
Histol Histopathol ; 38(3): 261-272, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36069179

RESUMEN

The virus that causes COVID-19 (Corona Virus Disease 2019), SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), is causing a worldwide pandemic, posing a substantial threat to human health. Patients show signs of pneumonia, ARDS, shock, acute cardiac injury, acute kidney injury and other complications. The SARS-CoV-2 receptor is angiotensin converting enzyme 2 (ACE2), which is an important component of the renin-angiotensin system (RAS). In addition, TMPRSS2 or other cofactors are needed to allow the virus to enter the host. Clinical patients have exhibited varying degrees of genitourinary and endocrine system damage, and some studies have also reported potential risks to the genitourinary and endocrine systems. This article reviews the mechanism underlying SARS-CoV-2 infection and the current studies on the male genitourinary and endocrine systems and proposes that more attention should be directed towards human reproductive and endocrine health during the SARS-CoV-2 epidemic.


Asunto(s)
COVID-19 , Humanos , Masculino , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2 , Peptidil-Dipeptidasa A/metabolismo , Sistema Renina-Angiotensina , Sistema Endocrino/metabolismo
10.
Cell Tissue Res ; 390(2): 293-313, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36044078

RESUMEN

Spermatogenesis is a finely regulated process of germ cell proliferation and differentiation that leads to the production of sperm in seminiferous tubules. Although the mammalian target of rapamycin (mTOR) signaling pathway is crucial for spermatogenesis in mammals, its functions and molecular mechanisms in spermatogenesis remain largely unknown in nonmammalian species, particularly in Crustacea. In this study, we first identified es-Raptor (the core component of mTOR complex 1) and es-Rictor (the core component of mTOR complex 2) from the testis of Eriocheir sinensis. Dynamic localization of es-Raptor and es-Rictor implied that these proteins were indispensable for the spermatogenesis of E. sinensis. Furthermore, es-Raptor and es-Rictor knockdown results showed that the mature sperm failed to be released, causing almost empty lumens in the testis. We investigated the reasons for these effects and found that the actin-based cytoskeleton was disrupted in the knockdown groups. In addition, the integrity of the testis barrier (similar to the blood-testis barrier in mammals) was impaired and affected the expression of cell junction proteins. Further study revealed that es-Raptor and es-Rictor may regulate spermatogenesis via both mTORC1- and mTORC2-dependent mechanisms that involve es-rpS6 and es-Akt/es-PKC, respectively. Moreover, to explore the testis barrier in E. sinensis, we established a cadmium chloride (CdCl2)-induced testis barrier damage model as a positive control. Morphological and immunofluorescence results were similar to those of the es-Raptor and es-Rictor knockdown groups. Altogether, es-Raptor and es-Rictor were important for spermatogenesis through maintenance of the actin filament network and cell junctions in E. sinensis.


Asunto(s)
Braquiuros , Semen , Animales , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Espermatogénesis/fisiología , Citoesqueleto de Actina , Uniones Intercelulares , Proteínas/farmacología , Mamíferos
11.
Reprod Biol Endocrinol ; 20(1): 97, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780146

RESUMEN

Follicle-stimulating hormone signaling is essential for the initiation and early stages of spermatogenesis. Follicle-stimulating hormone receptor is exclusively expressed in Sertoli cells. As the only type of somatic cell in the seminiferous tubule, Sertoli cells regulate spermatogenesis not only by controlling their own number and function but also through paracrine actions to nourish germ cells surrounded by Sertoli cells. After follicle-stimulating hormone binds to its receptor and activates the follicle-stimulating hormone signaling pathway, follicle-stimulating hormone signaling will establish a normal Sertoli cell number and promote their differentiation. Spermatogonia pool maintenance, spermatogonia differentiation and their entry into meiosis are also positively regulated by follicle-stimulating hormone signaling. In addition, follicle-stimulating hormone signaling regulates germ cell survival and limits their apoptosis. Our review summarizes the aforementioned functions of follicle-stimulating hormone signaling in Sertoli cells. We also describe the clinical potential of follicle-stimulating hormone treatment in male patients with infertility. Furthermore, our review may be helpful for developing better therapies for treating patients with dysfunctional follicle-stimulating hormone signaling in Sertoli cells.


Asunto(s)
Hormona Folículo Estimulante , Células de Sertoli , Espermatogénesis , Animales , Hormona Folículo Estimulante/metabolismo , Humanos , Masculino , Meiosis , Ratones , Ratas , Células de Sertoli/metabolismo , Transducción de Señal , Espermatogénesis/fisiología , Espermatogonias
12.
Histol Histopathol ; 37(11): 1053-1064, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35673893

RESUMEN

Male sterility is a worldwide health problem which has troubled many unfortunate families and attracted widespread attention in the field of reproduction. Retinoic acid (RA) is a metabolite of vitamin A. Previous studies have shown that insufficient intake of vitamin A can lead to male infertility. Similarly, RA-deficiency can lead to abnormal spermatogenesis in men. RA signaling is inseparable from hormone stimulation, such as FSH, testosterone and others. It can regulate spermatogenesis as well, including the proliferation and differentiation of spermatogonia, meiosis, spermiogenesis and spermiation. To promote or inhibit spermatogenesis, RA regulates Stra8, Kit, GDNF, BMP4 and other factors in various pathways. At the self-renewal stage, RA inhibits spermatogonia renewal by directly or indirectly inhibiting DMRT, GDNF and Cyclin. At the stage of differentiation and meiosis, RA controls SSC differentiation through Kit induction and Nanos2 inhibition, and controls spermatogonia meiotic entry through up- regulation of Stra8. At the stage of spermiogenesis, RARα945;, as a key regulator, regulates spermatogenesis by up regulating Stra8 while binding with RA. Although RA plays an important role in all stages of spermatogenesis, RA signaling is more important in the early stage of spermatogonia (spg) differentiation and spermatocyte(spc) meiosis. According to the principle of RA signaling that regulates spermatogenesis, we also speculate on the future clinical application of RA, such as potential induction of SSC in vitro, contraception and restoring spermatogenesis. This paper reviews the regulatory pathways of RA, and prospects the clinical applications of RA signaling in the future.


Asunto(s)
Tretinoina , Vitamina A , Masculino , Humanos , Transducción de Señal
13.
Histol Histopathol ; 37(9): 825-838, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35470414

RESUMEN

The generation of functional sperm relies on spermatogonial stem cells (SSCs) as they can maintain a stem cell pool for continuous generation of functional spermatozoa. The maintenance of SSCs is regulated by several factors. In this paper, we summarize the niche and intrinsic factors in regulating SSC self-renewal and proliferation. GDNF regulates SSC self-renewal through Ras-ERK1/2, SFC, PI3K/Akt and MEK/ERK-mTOR signaling pathways. FGF activates MAPK2K1, ERK and Akt pathways and EGF activates ERK and Akt pathways to induce SSC proliferation. Wnt ligands regulate SSC self-renewal and proliferation through both ß-catenin dependent and independent pathways. SCF1 and CXCL12 are also found to have roles in SSC maintenance. As for intrinsic factors in SSCs, ETV5, Bcl6b, Lhx1, ID4 and Nanos2 are regulated by niche factors. They act as the downstream factors of niche factors in regulating SSC self-renewal and proliferation. Transcriptional factors OCT4 and PLZF, as well as FOXO1 in SSCs can directly regulate SSC self-renewal and proliferation. Although we have identified the factors, the detailed mechanism of these factors in regulating SSC fate determination is largely unknown. Here, we summarize factors which have roles in SSC fate determination and hope it will be beneficial for further study and treatment of male infertility.


Asunto(s)
Autorrenovación de las Células , beta Catenina , Animales , Masculino , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas , Ligandos , Factor de Crecimiento Epidérmico , Proliferación Celular , Semen/metabolismo , Mamíferos/metabolismo , Serina-Treonina Quinasas TOR , Quinasas de Proteína Quinasa Activadas por Mitógenos
14.
Histol Histopathol ; 37(7): 621-636, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35388905

RESUMEN

The PI3K/AKT signaling pathway is one of the most crucial regulatory mechanisms in animal cells, which can mainly regulate proliferation, survival and anti-apoptosis in cell lines. In the seminiferous epithelium, most studies were concentrated on the role of PI3K/AKT signaling in immature Sertoli cells (SCs) and spermatogonia stem cells (SSCs). PI3K/AKT signaling can facilitate the proliferation and anti-apoptosis of immature Sertoli cells and spermatogenic cells. Besides, in mature Sertoli cells, this pathway can disintegrate the structure of the blood-testis barrier (BTB) via regulatory protein synthesis and the cytoskeleton of Sertoli cells. All of these effects can directly and indirectly maintain and promote spermatogenesis in male testis.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Células de Sertoli , Animales , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Transducción de Señal , Espermatogénesis/fisiología , Testículo
15.
Front Endocrinol (Lausanne) ; 13: 838858, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282467

RESUMEN

Androgen receptor signaling pathway is necessary to complete spermatogenesis in testes. Difference between androgen binding location in Sertoli cell classifies androgen receptor signaling pathway into classical signaling pathway and non-classical signaling pathway. As the only somatic cell type in seminiferous tubule, Sertoli cells are under androgen receptor signaling pathway regulation via androgen receptor located in cytoplasm and plasma membrane. Androgen receptor signaling pathway is able to regulate biological processes in Sertoli cells as well as germ cells surrounded between Sertoli cells. Our review will summarize the major discoveries of androgen receptor signaling pathway in Sertoli cells and the paracrine action on germ cells. Androgen receptor signaling pathway regulates Sertoli cell proliferation and maturation, as well as maintain the integrity of blood-testis barrier formed between Sertoli cells. Also, Spermatogonia stem cells achieve a balance between self-renewal and differentiation under androgen receptor signaling regulation. Meiotic and post-meiotic processes including Sertoli cell - Spermatid attachment and Spermatid development are guaranteed by androgen receptor signaling until the final sperm release. This review also includes one disease related to androgen receptor signaling dysfunction named as androgen insensitivity syndrome. As a step further ahead, this review may be conducive to develop therapies which can cure impaired androgen receptor signaling in Sertoli cells.


Asunto(s)
Receptores Androgénicos , Células de Sertoli , Humanos , Masculino , Receptores Androgénicos/metabolismo , Células de Sertoli/metabolismo , Transducción de Señal , Espermatogénesis/fisiología , Testículo/metabolismo
16.
Gene ; 808: 145998, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34626718

RESUMEN

In tumour cells, vitamin E and its derivatives play a critical role in the regulation of multiple signalling pathways through their oxidative and nonoxidative functions. To date, there are 8 known natural vitamin E forms and many kinds of derivatives, among which VES and α-TEA have excellent anticancer activities. The MAPK pathway consists of a complex cascade of proteins that control the proliferation, differentiation and apoptosis of tumour cells. The MAPK pathway includes four subfamilies, ERK1/2, JNK1/2, p38 MAPK, and ERK5. Most of the proteins in these subfamilies interact with each other in a complex manner. The anticancer function of vitamin E and its derivatives is closely related to the MAPK cascade. Studies have shown that in tumour cells, α-T/γ-T/γ-T3/δ-T3/VES/α-TEA regulated ERK1/2, prevent tumorigenesis, inhibit tumour cell growth and metastasis and induce cell differentiation, apoptosis, and cell cycle arrest; γ-T3/δ-T3/VES/α-TEA regulates JNK1/2, induce apoptosis, reduce ceramide synthesis and inhibit proliferation; and γ-T3/δ-T3/VES regulate p38 MAPK and induce apoptosis. This paper reviews the role of vitamin E and its derivatives in the MAPK cascade, and tumour cells are used as a model in an attempt to explore the mechanism of their interactions.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias/metabolismo , Vitamina E/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Proteína Quinasa 3 Activada por Mitógenos , Neoplasias/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Vitamina E/metabolismo , Vitamina E/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
DNA Cell Biol ; 41(2): 80-90, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34847739

RESUMEN

Apoptosis plays a key role in removing abnormal or senescent cells, maintaining the overall health of the tissue, and coordinating individual development. Recently, it has been discovered that the intracellular cytoskeleton plays a role in the apoptotic process. In addition, the regulatory role of extracellular matrix (ECM) fibrous proteins, which can be considered as the extracellular skeleton, in the process of apoptosis is rarely summarized. In this review, we collect the latest knowledge about how fibrous proteins inside and outside cells regulate apoptosis. We describe how ECM fibrous proteins participate in the regulation of death receptor and mitochondrial pathways through various signaling cascades mediated by integrins. We then explore the molecular mechanisms by which intracellular intermediate filaments regulate cell apoptosis by regulating death receptors on the cell membrane surface. Similarly, we report on novel supporting functions of microtubules in the execution phase of apoptosis and discuss their formation mechanisms. Finally, we discuss that the polypeptide fragments formed by caspase degradation of ECM fibrous proteins and intracellular intermediate filament act as local regulatory signals to play different regulatory roles in apoptosis.


Asunto(s)
Citoesqueleto
18.
Aging (Albany NY) ; 13(23): 25440-25452, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34904960

RESUMEN

As one of the most commonly used nanoparticles, titanium dioxide nanoparticles (TiO2-NPs) are widely used as coating reagents in cosmetics, medicine and other industries. The increasing risk of exposure to TiO2-NPs raises concerns about their safety. In this study, we investigated the mechanism by which TiO2-NPs cross the blood-testis barrier (BTB). TM-4 cells were selected as an in vitro Sertoli cell model of BTB. Cell viability, cell morphological changes, apoptosis, oxidative damage, and the expression levels of actin regulatory and tight junction (TJ) proteins were assessed in TM-4 cells treated with 3-nm and 24-nm TiO2-NPs. Cells treated with 3-nm TiO2-NPs exhibited increased cytotoxicity and decreased Annexin II expression, whereas cells treated with 24-nm TiO2-NPs exhibited increased Arp 3 and c-Src expression. Both TiO2-NPs induced significant oxidative stress, decreased the expression of TJ proteins (occludin, ZO-1 and claudin 5), damaged the TJ structure, and exhibited enlarged gaps between TM-4 cells. Our results indicated that both TiO2-NPs crossed the BTB by disrupting actin-based adhesive junctions of TM-4 cells; however, apoptosis was not observed. Our results provide new insights into how TiO2-NPs cross the BTB.


Asunto(s)
Actinas/antagonistas & inhibidores , Barrera Hematotesticular/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Nanopartículas del Metal/efectos adversos , Titanio/efectos adversos , Actinas/metabolismo , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Proteínas de Uniones Estrechas/metabolismo
19.
Nanomedicine (Lond) ; 16(30): 2725-2741, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34870452

RESUMEN

Engineered nanoparticles (ENPs) are widely used in medical diagnosis and treatment, as food additives and as energy materials. ENPs may exert adverse or beneficial effects on the human body, which may be linked to interactions with biological barriers. In this review, the authors summarize the influences of four typical metal/metal oxide nanomaterials (Ag, TiO2, Au, ZnO nanoparticles) on the paracellular permeability of biological barriers. Disruptions on tight junctions, adhesion junctions, gap junctions and desmosomes via complex signaling pathways, such as the MAPK, PKC and ROCK signaling pathways, affect paracellular permeability. Reactive oxygen species and cytokines underlie the mechanism of ENP-triggered alterations in paracellular permeability. This review provides the information necessary for the cautious application of nanoparticles in medicine and life sciences in the future.


Asunto(s)
Nanopartículas , Uniones Estrechas , Humanos , Permeabilidad , Uniones Estrechas/metabolismo
20.
Biochem Biophys Res Commun ; 576: 7-14, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34474246

RESUMEN

In Asia, prostate cancer is becoming a growing concern, impacting both socially and economically, compared with what is seen in western countries. Hence, it is essential to know the mechanisms associated with the development and tumorigenesis of PCa for primary diagnosis, risk management, and development of therapy strategies against PCa. Kinesin family member 15 (KIF15), a kinesin family member, is a plus-end-directed kinesin that functions to form bipolar spindles. There is emerging evidence indicating that KIF15 plays a significant role in several malignancies, such as pancreatic cancer, hepatocellular carcinoma, lung adenocarcinoma, and breast cancer. Still, the function of KIF15 remains unclear in prostate cancer. Here, we study the functional importance of KIF15 in the tumorigenesis of PCa. The bioinformatic analysis from PCa patients revealed high KIF15 expression compared to normal prostate tissues. High expression hinting at a possible functional role of KIF15 in regulating cell proliferation of PCa, which was demonstrated by both in vitro and in vivo assays. Downregulation of KIF15 silenced the expression of CDK2, p-RB, and Cyclin D1 and likewise blocked the cells at the G1 stage of the cell cycle. In addition, KIF15 downregulation inhibited MEK-ERK signaling by significantly silencing p-ERK and p-MEK levels. In conclusion, this study confirmed the functional significance of KIF15 in the growth and development of prostate cancer and could be a novel therapeutic target for the treatment of PCa.


Asunto(s)
Cinesinas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Biología Computacional/métodos , Bases de Datos Genéticas , Humanos , Cinesinas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...