Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.885
Filtrar
1.
Pest Manag Sci ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742692

RESUMEN

BACKGROUND: Bombyx mori nuclear polyhedrosis virus (BmNPV), as a typical baculovirus, is the primary pathogen that infects the silkworm B. mori, a lepidopteran species. Owing to the high biological safety of BmNPV in infecting insects, it is commonly utilized as a biological insecticide for pest control. Apoptosis is important in the interaction between the host and pathogenic microorganisms. MicroRNAs (miRNAs) influence immune responses and promote stability of the immune system via apoptosis. Therefore, the study of apoptosis-related miRNA in silkworms during virus infection can not only provide support for standardizing the prevention and control of diseases and insect pests, but also reduce the economic losses to sericulture caused by the misuse of biological pesticides. RESULTS: Through transcriptome sequencing, we identified a miRNA, miR-31-5p, and demonstrated that it can inhibit apoptosis in silkworm cells and promote the proliferation of BmNPV in BmE-SWU1 cells. We identified a target gene of miR-31-5p, B. mori cytochrome P450 9e2 (BmCYP9e2), and demonstrated that it can promote apoptosis in silkworm cells and inhibit the proliferation of BmNPV. Moreover, we constructed transgenic silkworm strains with miR-31-5p knockout and confirmed that they can inhibit the proliferation of BmNPV. CONCLUSION: These data indicate that miR-31-5p may exert functions of inhibiting apoptosis and promoting virus proliferation by regulating BmCYP9e2. The findings demonstrate how miRNAs influence host cell apoptosis and how they are involved in the host immune system response to viruses, providing important insights into the applications of biological insecticides for pest control. © 2024 Society of Chemical Industry.

2.
J Agric Food Chem ; 72(19): 10772-10780, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703122

RESUMEN

Protoporphyrinogen IX oxidase (PPO, E.C. 1.3.3.4) plays a pivotal role in chlorophyll biosynthesis in plants, making it a prime target for herbicide development. In this study, we conducted an investigation aimed at discovering PPO-inhibiting herbicides. Through this endeavor, we successfully identified a series of novel compounds based on the pyridazinone scaffold. Following structural optimization and biological assessment, compound 10ae, known as ethyl 3-((6-fluoro-5-(6-oxo-4-(trifluoromethyl)pyridazin-1(6H)-yl)benzo[d]thiazol-2-yl)thio)propanoate, emerged as a standout performer. It exhibited robust activity against Nicotiana tabacum PPO (NtPPO) with an inhibition constant (Ki) value of 0.0338 µM. Concurrently, we employed molecular simulations to obtain further insight into the binding mechanism with NtPPO. Additionally, another compound, namely, ethyl 2-((6-fluoro-5-(5-methyl-6-oxo-4-(trifluoromethyl)pyridazin-1(6H)-yl)benzo[d]thiazol-2-yl)thio)propanoate (10bh), demonstrated broad-spectrum and highly effective herbicidal properties against all six tested weeds (Leaf mustard, Chickweed, Chenopodium serotinum, Alopecurus aequalis, Poa annua, and Polypogon fugax) at the dosage of 150 g a.i./ha through postemergence application in a greenhouse. This work identified a novel lead compound (10bh) that showed good activity in vitro and excellent herbicidal activity in vivo and had promising prospects as a new PPO-inhibiting herbicide lead.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Herbicidas , Nicotiana , Proteínas de Plantas , Protoporfirinógeno-Oxidasa , Piridazinas , Protoporfirinógeno-Oxidasa/antagonistas & inhibidores , Protoporfirinógeno-Oxidasa/metabolismo , Protoporfirinógeno-Oxidasa/química , Protoporfirinógeno-Oxidasa/genética , Piridazinas/química , Piridazinas/farmacología , Herbicidas/farmacología , Herbicidas/química , Herbicidas/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Nicotiana/metabolismo , Nicotiana/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Simulación del Acoplamiento Molecular , Estructura Molecular , Malezas/efectos de los fármacos , Malezas/enzimología , Cinética
3.
Small ; : e2310547, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712578

RESUMEN

The interfacial instability between PEO-based solid electrolyte (SPE) and high-voltage cathode materials inhibits the longevity of high-energy-density all-solid-state polymer lithium metal batteries (ASSPLBs). Herein, for the first time it is demonstrated, that contact loss caused by gas generation from interfacial side reactions between the high-voltage cathode and solid polymer electrolyte (SPE) can also arise in ASSPLBs. To alleviate the interfacial side reactions, a LiNb0.6Ti0.5O3 (LNTO) layer is well coated on LiNi0.83Co0.07Mn0.1O2 (NCM83), denoted as (CNCM83). The LNTO layer with low electronic conductivity reduces the decomposition drive force of SPE. Furthermore, Ti and Nb in the LNTO layer spontaneously migrate inside the NCM83 surface to form a strong Ti/Nb─O bond, stalling oxygen evolution in high-voltage cathodes. The interfacial degradation phenomena, including SPE decomposition, detrimental phase transition and intragranular cracks of NCM83, and void formation between cathode and SPE, are effectively mitigated by the LNTO layer. Therefore, the growth rate of interfacial resistance (RCEI) decreases from 37.6 Ω h-0.5 for bare NCM83 to 2.4 Ω h-0.5 for CNCM83 at 4.2 V. Moreover, 4.2 V PEO-based ASSPLBs achieve impressive cyclability with high capacity retention of 135 mAh g-1 (75%) even after 300 cycles at 0.5 C.

5.
Arch Acad Emerg Med ; 12(1): e31, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721446

RESUMEN

Introduction: Aneurysmal subarachnoid hemorrhage (SAH) constitutes a life-threatening condition, and identifying the ruptured aneurysm is essential for further therapy. This study aimed to evaluate the diagnostic accuracy of hypo-attenuating berry sign (HBS) observed on computed tomography (CT) scan in distinguishing ruptured aneurysms. Methods: In this diagnostic accuracy study, patients who had SAH and underwent non-enhanced brain CT scan were recruited. The HBS was defined as a hypo-attenuating area with an identifiable border in the blood-filled hyper-dense subarachnoid space. The screening performance characteristics of HBS in identifying ruptured aneurysms were calculated considering the digital subtraction angiography (DSA) as the gold standard. Results: A total of 129 aneurysms in 131 patients were analyzed. The overall sensitivity and specificity of HBS in the diagnosis of aneurysms were determined to be 78.7% (95%CI: 73.1% - 83.4%) and 70.7% (95%CI: 54.3% - 83.4%), respectively. Notably, the sensitivity increased to 90.9% (95%CI: 84.3% - 95.0%) for aneurysms larger than 5mm. The level of inter-observer agreement for assessing the presence of HBS was found to be substantial (kappa=0.734). The diagnostic accuracy of HBS in individuals exhibited enhanced specificity, sensitivity, and reliability when evaluating patients with a solitary aneurysm or assessing ruptured aneurysms. The multivariate logistic regression analysis revealed a statistically significant relationship between aneurysm size and the presence of HBS (odds ratios of 1.667 (95%CI: 1.238 - 2.244; p < 0.001) and 1.696 (95%CI: 1.231 - 2.335; p = 0.001) for reader 1 and reader 2, respectively). Conclusions: The HBS can serve as a simple and easy-to-use indicator for identifying a ruptured aneurysm and estimating its size in SAH patients.  .

6.
Microbes Infect ; : 105350, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723999

RESUMEN

The widespread transmission of SARS-CoV-2 in humans poses a serious threat to public health security, and a growing number of studies have discovered that SARS-CoV-2 infection in wildlife and mutate over time. This article mainly reports the first systematic review and meta-analysis of the prevalence of SARS-CoV-2 in wildlife. The pooled prevalence of the 29 included articles was calculated by us using a random effects model (22.9%) with a high heterogeneity (I2 =98.7%, p=0.00). Subgroup analysis and univariate regression analysis found potential risk factors contributing to heterogeneity were country, wildlife species, sample type, longitude, and precipitation. In addition, the prevalence of SARS-CoV-2 in wildlife increased gradually over time. Consequently, it is necessary to comprehensively analyze the risk factors of SARS-CoV-2 infection in wildlife and develop effective control policies, as well as to monitor the mutation of SARS-CoV-2 in wildlife at all times to reduce the risk of SARS-CoV-2 transmission among different species.

7.
PLoS One ; 19(5): e0299602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696439

RESUMEN

PURPOSE: The purposes of this study were to determine whether biomechanical properties of mature oocytes could predict usable blastocyst formation better than morphological information or maternal factors, and to demonstrate the safety of the aspiration measurement procedure used to determine the biomechanical properties of oocytes. METHODS: A prospective split cohort study was conducted with patients from two IVF clinics who underwent in vitro fertilization. Each patient's oocytes were randomly divided into a measurement group and a control group. The aspiration depth into a micropipette was measured, and the biomechanical properties were derived. Oocyte fertilization, day 3 morphology, and blastocyst development were observed and compared between measured and unmeasured cohorts. A predictive classifier was trained to predict usable blastocyst formation and compared to the predictions of four experienced embryologists. RESULTS: 68 patients and their corresponding 1252 oocytes were included in the study. In the safety analyses, there was no significant difference between the cohorts for fertilization, while the day 3 and 5 embryo development were not negatively affected. Four embryologists predicted usable blastocyst development based on oocyte morphology with an average accuracy of 44% while the predictive classifier achieved an accuracy of 71%. Retaining the variables necessary for normal fertilization, only data from successfully fertilized oocytes were used, resulting in a classifier an accuracy of 81%. CONCLUSIONS: To date, there is no standard guideline or technique to aid in the selection of oocytes that have a higher likelihood of developing into usable blastocysts, which are chosen for transfer or vitrification. This study provides a comprehensive workflow of extracting biomechanical properties and building a predictive classifier using these properties to predict mature oocytes' developmental potential. The classifier has greater accuracy in predicting the formation of usable blastocysts than the predictions provided by morphological information or maternal factors. The measurement procedure did not negatively affect embryo culture outcomes. While further analysis is necessary, this study shows the potential of using biomechanical properties of oocytes to predict embryo developmental outcomes.


Asunto(s)
Blastocisto , Desarrollo Embrionario , Fertilización In Vitro , Oocitos , Humanos , Blastocisto/fisiología , Blastocisto/citología , Femenino , Oocitos/fisiología , Oocitos/citología , Adulto , Fenómenos Biomecánicos , Fertilización In Vitro/métodos , Desarrollo Embrionario/fisiología , Estudios Prospectivos
8.
Acta Pharmacol Sin ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702500

RESUMEN

It has been shown that prostaglandin (PG) E2 synthesized in the lateral parabrachial nucleus (LPBN) is involved in lipopolysaccharide-induced fever. But the neural mechanisms of how intra-LPBN PGE2 induces fever remain unclear. In this study, we investigated whether the LPBN-preoptic area (POA) pathway, the thermoafferent pathway for feed-forward thermoregulatory responses, mediates fever induced by intra-LPBN PGE2 in male rats. The core temperature (Tcore) was monitored using a temperature radiotelemetry transponder implanted in rat abdomen. We showed that microinjection of PGE2 (0.28 nmol) into the LPBN significantly enhanced the density of c-Fos-positive neurons in the median preoptic area (MnPO). The chemical lesioning of MnPO with ibotenate or selective genetic lesioning or inhibition of the LPBN-MnPO pathway significantly attenuated fever induced by intra-LPBN injection of PGE2. We demonstrated that EP3 receptor was a pivotal receptor for PGE2-induced fever, since microinjection of EP3 receptor agonist sulprostone (0.2 nmol) or EP3 receptor antagonist L-798106 (2 nmol) into the LPBN mimicked or weakened the pyrogenic action of LPBN PGE2, respectively, but this was not the case for EP4 and EP1 receptors. Whole-cell recording from acute LPBN slices revealed that the majority of MnPO-projecting neurons originating from the external lateral (el) and dorsal (d) LPBN were excited and inhibited, respectively, by PGE2 perfusion, initiating heat-gain and heat-loss mechanisms. The amplitude but not the frequency of spontaneous and miniature glutamatergic excitatory postsynaptic currents (sEPSCs and mEPSCs) in MnPO-projecting LPBel neurons increased after perfusion with PGE2; whereas the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and the A-type potassium (IA) current density did not change. In MnPO-projecting LPBd neurons, neither sEPSCs nor sIPSCs responded to PGE2; however, the IA current density was significantly increased by PGE2 perfusion. These electrophysiological responses and the thermoeffector reactions to intra-LPBN PGE2 injection, including increased brown adipose tissue thermogenesis, shivering, and decreased heat dissipation, were all abolished by L-798106, and mimicked by sulprostone. These results suggest that the pyrogenic effects of intra-LPBN PGE2 are mediated by both the inhibition of the LPBd-POA pathway through the EP3 receptor-mediated activation of IA currents and the activation of the LPBel-POA pathway through the selective enhancement of glutamatergic synaptic transmission via EP3 receptors.

9.
Heliyon ; 10(9): e30411, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711642

RESUMEN

Background: To assess the feasibility of multiparametric magnetic resonance imaging in predicting tumor recurrence in nonenhancing peritumoral regions in patients with glioblastoma at baseline. Methods: Fifty-eight patients with recurrent glioblastoma underwent multiparametric magnetic resonance imaging, including T2-weighted fluid-attenuated inversion recovery, diffusion-weighted imaging, and dynamic susceptibility contrast perfusion-weighted imaging. Nonenhancing peritumoral regions with glioblastoma recurrence were identified by coregistering preoperative and post-recurrent magnetic resonance images. Regions of interest were placed in nonenhancing peritumoral regions with and without tumor recurrence to calculate the apparent diffusion coefficient value, and relative ratios of T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and cerebral blood volume values. Results: Significant lower relative T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and relative apparent diffusion coefficient but higher relative cerebral blood volume values were found in the nonenhancing peritumoral regions with tumor recurrence than without recurrence (all P < 0.05). The threshold values ≥ 0.89 for relative cerebral blood volume provide the optimal performance for predicting the nonenhancing peritumoral regions with future tumor recurrence, with the sensitivity, specificity, and accuracy of 84.7%, 83.6%, and 85.8%, respectively. The combination of relative T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and relative cerebral blood volume can provide better predictive performance than relative cerebral blood volume (P = 0.015). Conclusion: The combined use of T2-weighted fluid-attenuated inversion recovery, diffusion-weighted imaging, and dynamic susceptibility contrast perfusion-weighted imaging can effectively estimate the risk of future tumor recurrence at baseline.

10.
Heliyon ; 10(9): e29350, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694110

RESUMEN

Objectives: This study aimed to explore the spatial distribution of brain metastases (BMs) from breast cancer (BC) and to identify the high-risk sub-structures in BMs that are involved at first diagnosis. Methods: Magnetic resonance imaging (MRI) scans were retrospectively reviewed at our centre. The brain was divided into eight regions according to its anatomy and function, and the volume of each region was calculated. The identification and volume calculation of metastatic brain lesions were accomplished using an automatically segmented 3D BUC-Net model. The observed and expected rates of BMs were compared using 2-tailed proportional hypothesis testing. Results: A total of 250 patients with BC who presented with 1694 BMs were retrospectively identified. The overall observed incidences of the substructures were as follows: cerebellum, 42.1 %; frontal lobe, 20.1 %; occipital lobe, 9.7 %; temporal lobe, 8.0 %; parietal lobe, 13.1 %; thalamus, 4.7 %; brainstem, 0.9 %; and hippocampus, 1.3 %. Compared with the expected rate based on the volume of different brain regions, the cerebellum, occipital lobe, and thalamus were identified as higher risk regions for BMs (P value ≤ 5.6*10-3). Sub-group analysis according to the type of BC indicated that patients with triple-negative BC had a high risk of involvement of the hippocampus and brainstem. Conclusions: Among patients with BC, the cerebellum, occipital lobe and thalamus were identified as higher-risk regions than expected for BMs. The brainstem and hippocampus were high-risk areas of the BMs in triple negative breast cancer. However, further validation of this conclusion requires a larger sample size.

11.
Biosens Bioelectron ; 258: 116353, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38696966

RESUMEN

Male infertility is a pervasive global reproductive challenge, primarily attributed to a decline in semen quality. Addressing this concern, there has been a growing focus on spermatozoa sorting in assisted reproductive technology. This study introduces a groundbreaking development in the form of a thermotaxis and rheotaxis microfluidic (TRMC) device designed for efficient motile spermatozoa sorting within a short 15-min timeframe. The TRMC device mimics the natural sperm sorting mechanism of the oviduct, selecting spermatozoa with superior motility and DNA integrity. The experimental outcomes demonstrate a remarkable enhancement in the percentage of progressive spermatozoa following sorting, soaring from 3.90% to an impressive 96.11% when subjected to a temperature decrease from 38 °C to 35 °C. Notably, sperm motility exhibited a substantial 69% improvement. The TRMC device exhibited a commendable recovery rate of 60.93%, surpassing current clinical requirements. Furthermore, the sorted spermatozoa displayed a notable reduction in the DNA fragmentation index to 6.94%, signifying a substantial 90% enhancement in DNA integrity. This remarkable advancement positions the TRMC device as highly suitable for applications in in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), offering a promising solution to male infertility challenges.

12.
World J Gastrointest Surg ; 16(4): 1087-1096, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38690037

RESUMEN

BACKGROUND: Acute liver failure (ALF) is a common cause of postoperative death in patients with hepatocellular carcinoma (HCC) and is a serious threat to patient safety. The neutrophil-to-lymphocyte ratio (NLR) is a common inflammatory indicator that is associated with the prognosis of various diseases, and the albumin-bilirubin score (ALBI) is used to evaluate liver function in liver cancer patients. Therefore, this study aimed to construct a predictive model for postoperative ALF in HCC tumor integrity resection (R0) based on the NLR and ALBI, providing a basis for clinicians to choose appropriate treatment plans. AIM: To construct an ALF prediction model after R0 surgery for HCC based on NLR and ALBI. METHODS: In total, 194 patients with HCC who visited The First People's Hospital of Lianyungang to receive R0 between May 2018 and May 2023 were enrolled and divided into the ALF and non-ALF groups. We compared differences in the NLR and ALBI between the two groups. The risk factors of ALF after R0 surgery for HCC were screened in the univariate analysis. Independent risk factors were analyzed by multifactorial logistic regression. We then constructed a prediction model of ALF after R0 surgery for HCC. A receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the value of the prediction model. RESULTS: Among 194 patients with HCC who met the standard inclusion criteria, 46 cases of ALF occurred after R0 (23.71%). There were significant differences in the NLR and ALBI between the two groups (P < 0.05). The univariate analysis showed that alpha-fetoprotein (AFP) and blood loss volume (BLV) were significantly higher in the ALF group compared with the non-ALF group (P < 0.05). The multifactorial analysis showed that NLR, ALBI, AFP, and BLV were independent risk factors for ALF after R0 surgery in HCC. The predictive efficacy of NLR, ALBI, AFP, and BLV in predicting the occurrence of ALT after R0 surgery for HCC was average [area under the curve (AUC)NLR = 0.767, AUCALBI = 0.755, AUCAFP = 0.599, AUCBLV = 0.718]. The prediction model for ALF after R0 surgery for HCC based on NLR and ALBI had a better predictive efficacy (AUC = 0.916). The calibration curve and actual curve were in good agreement. DCA showed a high net gain and that the model was safer compared to the curve in the extreme case over a wide range of thresholds. CONCLUSION: The prediction model based on NLR and ALBI can effectively predict the risk of developing ALF after HCC R0 surgery, providing a basis for clinical prevention of developing ALF after HCC R0 surgery.

13.
Neurocase ; : 1-5, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700142

RESUMEN

Isolated fornix anterior column infarction has rarely been described and is difficult to assess accurately using conventional magnetic resonance imaging (MRI). We report the case of a 75-year-old female who experienced acute anterograde amnesia. MRI performed within 24 h after amnesia onset showed an isolated infarction of the bilateral anterior columns of the fornix on diffusion-weighted imaging (DWI). Her symptoms persisted for up to 50 days, and diffusion tensor imaging (DTI) showed disruption of the fiber tracts of the fornix. when acute amnesia syndrome onset, fornix anterior column infarction should be considered, and optimized DWI and DTI methods are needed to study the fornix in vivo in future research.

14.
Pest Manag Sci ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738474

RESUMEN

BACKGROUND: MicroRNA (miRNA) pathway genes have been widely reported to participate in several physiological events in insect lifecycles. The cigarette beetle Lasioderma serricorne is an economically important storage pest worldwide. However, the functions of miRNA pathway genes in L. serricorne remain to be clarified. Herein, we investigated the function of molting and reproduction of the miRNA pathway in L. serricorne. RESULTS: LsDicer-1, LsArgonaute-1, LsLoquacious and LsExportin-5 were universally expressed in adults, whereas LsPasha and LsDrosha were mainly expressed in the pupae. The genes presented different patterns in various tissues. Silencing of LsDicer-1, LsArgonaute-1, LsDrosha and LsExportin-5 resulted in a high proportion of wing deformities and molting defects. Silencing of LsDicer-1, LsArgonaute-1, LsPasha and LsLoquacious affected the development of the ovary and the maturation of oocytes, resulting in a significant decrease in fecundity. Further investigation revealed that the decreases in LsDicer-1 and LsArgonaute-1 expression destroyed follicular epithelia and delayed vitellogenesis and oocyte development. In addition, the expression levels of several miRNAs (let-7, let-7-5p, miR-8-3p, miR-8-5p, miR-9c-5p, miR-71, miR-252-5p, miR-277-3p, miR-263b and Novel-miR-50) were decreased significantly after knockdown of these miRNA pathway core genes, indicating that they played important roles in regulating miRNA-mediated gene expression. CONCLUSION: The results indicate that miRNA pathway genes play important roles in the molting, ovarian development and female fecundity of L. serricorne, and thus are potentially suitable target genes for developing an RNAi strategy against a major pest of stored products. © 2024 Society of Chemical Industry.

15.
Zhongguo Zhong Yao Za Zhi ; 49(4): 961-967, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621903

RESUMEN

The chemical composition of the aqueous part of the extract from Lindera aggregata was studied, which was separated and purified by the macroporous resin column chromatography, MCI medium pressure column chromatography, semi-preparative high-performance liquid phase and other methods. The structures of the compounds were identified according to physical and chemical properties and spectroscopic data. Thirteen compounds were isolated and identified from the aqueous extracts, which were identified as(1S,3R,5R,6R,8S,10S)-epi-lindenanolide H(1), tachioside(2), lindenanolide H(3), leonuriside A(4), 3,4-dihydroxyphenyl ethyl ß-D-glucopyranoside(5), 3,4,5-trimethoxyphenol-1-O-6-α-L-rhamnose-(1→6)-O-ß-D-glucoside(6), 5-hydroxymethylfurfural(7),(+)-lyoniresin-4-yl-ß-D-glucopyranoside(8), lyoniside(9), norboldine(10), norisopordine(11), boldine(12), reticuline(13). Among them, compound 1 was a new one, and compounds 2, 5, 6, 8, 9 were obtained from L. aggregata for the first time. The inflammatory model was induced by lipopolysaccharide(LPS) in the RAW264.7 cells. The results showed that compounds 1, 8, 10 and 12 had significant anti-inflammatory activity.


Asunto(s)
Lindera , Sesquiterpenos , Lindera/química , Sesquiterpenos/farmacología , Sesquiterpenos/química , Glucósidos
16.
Lab Chip ; 24(10): 2644-2657, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38576341

RESUMEN

Developing a tumor model with vessels has been a challenge in microfluidics. This difficulty is because cancer cells can overgrow in a co-culture system. The up-regulation of anti-angiogenic factors during the initial tumor development can hinder neovascularization. The standard method is to develop a quiescent vessel network before loading a tumor construct in an adjacent chamber, which simulates the interaction between a tumor and its surrounding vessels. Here, we present a new method that allows a vessel network and a tumor to develop simultaneously in two linked chambers. The physiological environment of these two chambers is controlled by a microfluidic resistive circuit using two symmetric long microchannels. Applying the resistive circuit, a diffusion-dominated environment with a small 2-D pressure gradient is created across the two chambers with velocity <10.9 nm s-1 and Péclet number <6.3 × 10-5. This 2-D pressure gradient creates a V-shaped velocity clamp to confine the tumor-associated angiogenic factors at pores between the two chambers, and it has two functions. At the early stage, vasculogenesis is stimulated to grow a vessel network in the vessel chamber with minimal influence from the tumor that is still developed in the adjacent chamber. At the post-tumor-development stage, the induced steep concentration gradient at pores mimics vessel-tumor interactions to stimulate angiogenesis to grow vessels toward the tumor. Applying this method, we demonstrate that vasculogenic vessels can grow first, followed by stimulating angiogenesis. Angiogenic vessels can grow into stroma tissue up to 1.3 mm long, and vessels can also grow into or wrap around a 625 µm tumor spheroid or a tumor tissue developed from a cell suspension. In summary, our study suggests that the interactions between a developing vasculature and a growing tumor must be controlled differently throughout the tissue development process, including at the early stage when vessels are still forming and at the later stage when the tumor needs to interact with the vessels.


Asunto(s)
Técnicas Analíticas Microfluídicas , Neovascularización Patológica , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Dispositivos Laboratorio en un Chip , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana , Difusión , Neoplasias/metabolismo , Neoplasias/patología , Inductores de la Angiogénesis/metabolismo , Inductores de la Angiogénesis/farmacología , Diseño de Equipo
17.
Soft Matter ; 20(19): 3987-3995, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38686608

RESUMEN

To elucidate the effect of aromatic side chains on dilational rheological properties of N-acyltaurate amphiphiles at the decane-water interface, the interfacial rheological properties of sodium N-2-(2-naphthoxy)-tetradecanoyltaurinate (12+N-T) and sodium N-2-(p-butylphenoxy)-tetradecanoyltaurinate (12+4B-T) were investigated utilizing the drop shape analysis method. The effects of adsorption time, interfacial pressure, oscillating frequency, and bulk concentration on the interfacial dilational modulus and phase angle were explored. The results show that the 12+4B-T molecule with a longer hydrophobic chain shows a higher ability for reducing the interfacial tension (IFT). In addition, the interfacial films of both 12+N-T and 12+4B-T are dominated by diffusion exchange at high concentrations. The rigidity of molecules controls the diffusion exchange at low concentrations, while the molecular hydrodynamic radius determines the diffusion exchange at high concentrations. Thus, at low concentrations, the stronger intermolecular interaction between 12+4B-T molecules results in higher dilational modulus values than 12+N-T. When approaching the CMC (critical micelle concentration) value, the rapid diffusion exchange of 12+4B-T between the sublayer micelles and the interface causes a significant decrease in the dilational modulus, while the relatively rigid structure of 12+N-T enables a higher dilational modulus than 12+4B-T. What's more, the longer hydrophobic chain allows 12+4B-T molecules to escape from the interface more easily, resulting in a higher phase angle at low concentrations. However, the diffusion exchange of 12+4B-T is slower than that of 12+N-T, which results in lower phase angles for 12+4B-T than 12+N-T at high concentrations. In general, the introduction of a rigid naphthalene ring in the molecular structure gives the interfacial film greater strength at high concentration. The research results in this paper provide a new technique for the strength regulation of interfacial surfactant adsorption films.

18.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611749

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with a high degree of malignancy and poor prognosis. Tumor-associated macrophages (TAMs) have been identified as significant contributors to the growth and metastasis of TNBC through the secretion of various growth factors and chemokines. Salvianolic acid A (SAA) has been shown to have anti-cancer activities. However, the potential activity of SAA on re-polarized TAMs remains unclear. As there is a correlation between the TAMs and TNBC, this study investigates the effect of SAA on TAMs in the TNBC microenvironment. For that purpose, M2 TAM polarization was induced by two kinds of TNBC-conditioned medium (TNBC-TCM) in the absence or presence of SAA. The gene and protein expression of TAM markers were analyzed by qPCR, FCM, IF, ELISA, and Western blot. The protein expression levels of ERK and p-ERK in M2-like TAMs were analyzed by Western blot. The migration and invasion properties of M2-like TAMs were analyzed by Transwell assays. Here, we demonstrated that SAA increased the expression levels of CD86, IL-1ß, and iNOS in M2-like TAMs and, conversely, decreased the expression levels of Arg-1 and CD206. Moreover, SAA inhibited the migration and invasion properties of M2-like TAMs effectively and decreased the protein expression of TGF-ß1 and p-ERK in a concentration-dependent manner, as well as TGF-ß1 gene expression and secretion. Our current findings for the first time demonstrated that SAA inhibits macrophage polarization to M2-like TAMs by inhibiting the ERK pathway and promotes M2-like TAM re-polarization to the M1 TAMs, which may exert its anti-tumor effect by regulating M1/M2 TAM polarization. These findings highlight SAA as a potential regulator of M2 TAMs and the possibility of utilizing SAA to reprogram M2 TAMs offers promising insights for the clinical management of TNBC.


Asunto(s)
Ácidos Cafeicos , Lactatos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Factor de Crecimiento Transformador beta1 , Microambiente Tumoral , Macrófagos Asociados a Tumores
19.
Animals (Basel) ; 14(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612231

RESUMEN

Excessive liver fat causes non-alcoholic fatty liver disease (NAFLD) in laying hens, reducing egg production. Addressing NAFLD via bile-acid metabolism is gaining attention. We induced NAFLD in 7-week-old ISA female chickens with a high-cholesterol, low-choline diet (CLC) for 6 weeks. LC/MS was used to analyze serum and cecal bile acids, while cecal digesta DNA underwent 16S rRNA sequencing. The distribution of bile acid varied in healthy (CON) and CLC-fed chickens. CLC increased secondary bile acids (TLCA, TUDCA, THDCA, TDCA) in serum and primary bile acids (CDCA, TCDCA, isoDCA) in serum, as well as glycochenodeoxycholic acid (GCDCA) in cecal contents. CLC upregulated bile-acid synthesis enzymes (CYP7A1, CYP8B1) in the liver. Bile-acid receptor gene expression (HNF4A, FXR, LXR) was similar between groups. Microbiota abundance was richer in CON (alpha-diversity), with distinct separation (beta-diversity) between CON and CLC. The Firmicutes/Bacteroidetes ratio slightly decreased in CLC. Taxonomic analysis revealed higher Bacteroides, Alistipes, Megamonas in CLC but lower Barnesiella. CLC had more Mucispirillum, Eubacterium_coprostanoligenes_group, Shuttleworthia, and Olsenella, while CON had more Enterococcus, Ruminococcaceae_UCG_014, and Faecalibacterium. This study unveils bile-acid and microflora changes in a chicken NAFLD model, enhancing our understanding of fatty liver disease metabolism and aiding targeted interventions.

20.
Front Microbiol ; 15: 1380912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655090

RESUMEN

Background: There is growing evidence of associations between the gut microbiota and anxiety disorders, where changes in gut microbiotas may affect brain function and behavior via the microbiota-gut-brain axis. However, population-level studies offering a higher level of evidence for causality are lacking. Our aim was to investigate the specific gut microbiota and associated metabolites that are closely related to anxiety disorders to provide mechanistic insights and novel management perspectives for anxiety disorders. Method: This study used summary-level data from publicly available Genome-Wide Association Studies (GWAS) for 119 bacterial genera and the phenotype "All anxiety disorders" to reveal the causal effects of gut microbiota on anxiety disorders and identify specific bacterial genera associated with anxiety disorders. A two-sample, bidirectional Mendelian randomization (MR) design was deployed, followed by comprehensive sensitivity analyses to validate the robustness of results. We further conducted multivariable MR (MVMR) analysis to investigate the potential impact of neurotransmitter-associated metabolites, bacteria-associated dietary patterns, drug use or alcohol consumption, and lifestyle factors such as smoking and physical activity on the observed associations. Results: Bidirectional MR analysis identified three bacterial genera causally related to anxiety disorders: the genus Eubacterium nodatum group and genus Ruminococcaceae UCG011 were protective, while the genus Ruminococcaceae UCG011 was associated with an increased risk of anxiety disorders. Further MVMR suggested that a metabolite-dependent mechanism, primarily driven by tryptophan, tyrosine, phenylalanine, glycine and cortisol, which is consistent with previous research findings, probably played a significant role in mediating the effects of these bacterial genera to anxiety disorders. Furthermore, modifying dietary pattern such as salt, sugar and processed meat intake, and adjusting smoking state and physical activity levels, appears to be the effective approaches for targeting specific gut microbiota to manage anxiety disorders. Conclusion: Our findings offer potential avenues for developing precise and effective management approaches for anxiety disorders by targeting specific gut microbiota and associated metabolites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...