Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Oncol Lett ; 28(1): 295, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38737975

RESUMEN

Apolipoprotein A-I (APOA1) performs different roles in different subtypes of breast cancer. It is hypothesized to function as a tumor suppressor in basal-like breast cancer (BLBC). However, the specific role of APOA1 in BLBC and its underlying mechanisms remain unknown. The findings of the present study demonstrated a positive correlation between the expression level of APOA1 and the overall survival of patients with BLBC. Ectopic expression of APOA1 effectively inhibits the proliferation and metastasis of BLBC cells in vitro, and these effects are closely related to DNA methylation. To the best of our knowledge, the present study is the first to report increased methylation of the promoter region and decreased methylation of the structural genes of APOA1 in BLBC cells. These alterations resulted in the downregulation of APOA1 expression and suppression of BLBC tumor growth. Collectively, the results of the present study suggested that APOA1 mRNA expression is negatively regulated by DNA methylation in BLBC. Therefore, low expression of APOA1 may be a potential risk biomarker to predict survival in patients with BLBC.

2.
J Nanobiotechnology ; 22(1): 262, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760823

RESUMEN

BACKGROUND: Nanoplastics, are emerging pollutants, present a potential hazard to food security and human health. Titanium dioxide nanoparticles (Nano-TiO2), serving as nano-fertilizer in agriculture, may be important in alleviating polystyrene nanoplastics (PSNPs) toxicity. RESULTS: Here, we performed transcriptomic, metabolomic and physiological analyzes to identify the role of Nano-TiO2 in regulating the metabolic processes in PSNPs-stressed maize seedlings (Zea mays L.). The growth inhibition by PSNPs stress was partially relieved by Nano-TiO2. Furthermore, when considering the outcomes obtained from RNA-seq, enzyme activity, and metabolite content analyses, it becomes evident that Nano-TiO2 significantly enhance carbon and nitrogen metabolism levels in plants. In comparison to plants that were not subjected to Nano-TiO2, plants exposed to Nano-TiO2 exhibited enhanced capabilities in maintaining higher rates of photosynthesis, sucrose synthesis, nitrogen assimilation, and protein synthesis under stressful conditions. Meanwhile, Nano-TiO2 alleviated the oxidative damage by modulating the antioxidant systems. Interestingly, we also found that Nano-TiO2 significantly enhanced the endogenous melatonin levels in maize seedlings. P-chlorophenylalanine (p-CPA, a melatonin synthesis inhibitor) declined Nano-TiO2-induced PSNPs tolerance. CONCLUSIONS: Taken together, our data show that melatonin is involved in Nano-TiO2-induced growth promotion in maize through the regulation of carbon and nitrogen metabolism.


Asunto(s)
Carbono , Melatonina , Nitrógeno , Poliestirenos , Titanio , Zea mays , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Titanio/farmacología , Nitrógeno/metabolismo , Carbono/metabolismo , Melatonina/farmacología , Poliestirenos/farmacología , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Nanopartículas/química , Transducción de Señal/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
3.
iScience ; 27(5): 109741, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706871

RESUMEN

Pancreatic cancer (PC) is a lethal disease and associated with metabolism dysregulation. Nogo-B is related to multiple metabolic related diseases and types of cancers. However, the role of Nogo-B in PC remains unknown. In vitro, we showed that cell viability and migration was largely reduced in Nogo-B knockout or knockdown cells, while enhanced by Nogo-B overexpression. Consistently, orthotopic tumor and metastasis was reduced in global Nogo knockout mice. Furthermore, we indicated that glucose enhanced cell proliferation was associated to the elevation expression of Nogo-B and nuclear factor κB (NF-κB). While, NF-κB, glucose transporter type 1 (GLUT1) and sterol regulatory element-binding protein 1 (SREBP1) expression was reduced in Nogo-B deficiency cells. In addition, we showed that GLUT1 and SREBP1 was downstream target of NF-κB. Therefore, we demonstrated that Nogo deficiency inhibited PC progression is regulated by the NF-κB/GLUT1 and SREBP1 pathways, and suggested that Nogo-B may be a target for PC therapy.

4.
iScience ; 27(5): 109693, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38689642

RESUMEN

The USP7 deubiquitinase regulates proteins involved in the cell cycle, DNA repair, and epigenetics and has been implicated in cancer progression. USP7 inhibition has been pursued for the development of anti-cancer therapies. Here, we describe the discovery of potent and specific USP7 inhibitors exemplified by FX1-5303. FX1-5303 was used as a chemical probe to study the USP7-mediated regulation of p53 signaling in cells. It demonstrates mechanistic differences compared to MDM2 antagonists, a related class of anti-tumor agents that act along the same pathway. FX1-5303 synergizes with the clinically approved BCL2 inhibitor venetoclax in acute myeloid leukemia (AML) cell lines and ex vivo patient samples and leads to strong tumor growth inhibition in in vivo mouse xenograft models of multiple myeloma and AML. This work introduces new USP7 inhibitors, differentiates their mechanism of action from MDM2 inhibition, and identifies specific opportunities for their use in the treatment of AML.

5.
J Virol ; 98(5): e0019524, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38656209

RESUMEN

The host cytoskeleton plays crucial roles in various stages of virus infection, including viral entry, transport, replication, and release. However, the specific mechanisms by which intermediate filaments are involved in orthoflavivirus infection have not been well understood. In this study, we demonstrate that the Japanese encephalitis virus (JEV) remodels the vimentin network, resulting in the formation of cage-like structures that support viral replication. Mechanistically, JEV NS1 and NS1' proteins induce the translocation of CDK1 from the nucleus to the cytoplasm and interact with it, leading to the phosphorylation of vimentin at Ser56. This phosphorylation event recruits PLK1, which further phosphorylates vimentin at Ser83. Consequently, these phosphorylation modifications convert the typically filamentous vimentin into non-filamentous "particles" or "squiggles." These vimentin "particles" or "squiggles" are then transported retrogradely along microtubules to the endoplasmic reticulum, where they form cage-like structures. Notably, NS1' is more effective than NS1 in triggering the CDK1-PLK1 cascade response. Overall, our study provides new insights into how JEV NS1 and NS1' proteins manipulate the vimentin network to facilitate efficient viral replication. IMPORTANCE: Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus that causes severe encephalitis in humans, particularly in Asia. Despite the availability of a safe and effective vaccine, JEV infection remains a significant public health threat due to limited vaccination coverage. Understanding the interactions between JEV and host proteins is essential for developing more effective antiviral strategies. In this study, we investigated the role of vimentin, an intermediate filament protein, in JEV replication. Our findings reveal that JEV NS1 and NS1' proteins induce vimentin rearrangement, resulting in the formation of cage-like structures that envelop the viral replication factories (RFs), thus facilitating efficient viral replication. Our research highlights the importance of the interplay between the cytoskeleton and orthoflavivirus, suggesting that targeting vimentin could be a promising approach for the development of antiviral strategies to inhibit JEV propagation.


Asunto(s)
Proteína Quinasa CDC2 , Proteínas de Ciclo Celular , Virus de la Encefalitis Japonesa (Especie) , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Vimentina , Proteínas no Estructurales Virales , Replicación Viral , Proteína Quinasa CDC2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Virus de la Encefalitis Japonesa (Especie)/fisiología , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Humanos , Vimentina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fosforilación , Animales , Encefalitis Japonesa/virología , Encefalitis Japonesa/metabolismo , Células HEK293 , Línea Celular , Interacciones Huésped-Patógeno
6.
Res Sq ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38659849

RESUMEN

Carbon monoxide (CO) is an endogenous produced molecule and has shown efficacy in animal models of inflammation, organ injury, colitis and cancer metastasis. Because of its gaseous nature, there is a need for developing efficient CO delivery approaches, especially those capable of targeted delivery. In this study, we aim to take advantage of a previously reported approach of enrichment-triggered prodrug activation to achieve targeted delivery by targeting the folate receptor. The general idea is to exploit folate receptor-mediated enrichment as a way to accelerate a biomolecular Diels-Alder reaction for prodrug activation. In doing so, we first need to find ways to tune the reaction kinetics in order to ensure minimal rection without enrichment and optimal activation upon enrichment. In this feasibility study, we synthesized two diene-dienophile pairs and studied their reaction kinetics and ability to target the folate receptor. We found that folate conjugation significantly affects the reaction kinetics of the original diene-dienophile pairs. Such information will be very useful in future designs of similar targeted approaches of CO delivery.

7.
Cell Biol Toxicol ; 40(1): 23, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630355

RESUMEN

Cytosolic thiouridylase 2 (CTU2) is an enzyme modifying transfer RNAs post-transcriptionally, which has been implicated in breast cancer and melanoma development. And we found CTU2 participated in hepatocellular carcinoma (HCC) progression here. HepG2 cells as well as xenograft nude mice model were employed to investigate the role of CTU2 in HCC development in vitro and in vivo respectively. Further, we defined CTU2 as a Liver X receptor (LXR) targeted gene, with a typical LXR element in the CTU2 promoter. CTU2 expression was activated by LXR agonist and depressed by LXR knockout. Interestingly, we also found CTU2 took part in lipogenesis by directly enhancing the synthesis of lipogenic proteins, which provided a novel mechanism for LXR regulating lipid synthesis. Meanwhile, lipogenesis was active during cell proliferation, particularly in tumor cells. Reduction of CTU2 expression was related to reduced tumor burden and synergized anti-tumor effect of LXR ligands by inducing tumor cell apoptosis and inhibiting cell proliferation. Taken together, our study identified CTU2 as an LXR target gene. Inhibition of CTU2 expression could enhance the anti-tumor effect of LXR ligand in HCC, identifying CTU2 as a promising target for HCC treatment and providing a novel strategy for the application of LXR agonists in anti-tumor effect.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores X del Hígado , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama , Carcinoma Hepatocelular/genética , Modelos Animales de Enfermedad , Neoplasias Hepáticas/genética , Receptores X del Hígado/genética , Ratones Desnudos
8.
Phytomedicine ; 128: 155489, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569295

RESUMEN

BACKGROUND AND PURPOSE: Atherosclerosis is the primary pathological basis of cardiovascular disease. Ferroptosis is a regulated form of cell death, a process of lipid peroxidation driven by iron, which can initiate and promote atherosclerosis. STAT6 is a signal transducer that shows a potential role in regulating ferroptosis, but, the exact role in ferroptosis during atherogenesis remains unclear. The Traditional Chinese Medicine Maijitong granule (MJT) is used for treating cardiovascular disease and shows a potential inhibitory effect on ferroptosis. However, the antiatherogenic effect and the underlying mechanism remain unclear. In this study, we determined the role of STAT6 in ferroptosis during atherogenesis, investigated the antiatherogenic effect of MJT, and determined whether its antiatherogenic effect was dependent on the inhibition of ferroptosis. METHODS: 8-week-old male LDLR-/- mice were fed a high-fat diet (HFD) at 1st and 10th week, respectively, to assess the preventive and therapeutic effects of MJT on atherosclerosis and ferroptosis. Simultaneously, the anti-ferroptotic effects and mechanism of MJT were determined by evaluating the expression of genes responsible for lipid peroxidation and iron metabolism. Subsequently, we reanalyzed microarray data in the GSE28117 obtained from cells after STAT6 knockdown or overexpression and analyzed the correlation between STAT6 and ferroptosis. Finally, the STAT6-/- mice were fed HFD and injected with AAV-PCSK9 to validate the role of STAT6 in ferroptosis during atherogenesis and revealed the antiatherogenic and anti-ferroptotic effect of MJT. RESULTS: MJT attenuated atherosclerosis by reducing plaque lesion area and enhancing plaque stability in both preventive and therapeutic groups. MJT reduced inflammation via suppressing inflammatory cytokines and inhibited foam cell formation by lowering the LDL level and promoting ABCA1/G1-mediated lipid efflux. MJT ameliorated the ferroptosis by reducing lipid peroxidation and iron dysregulation during atherogenesis. Mechanistically, STAT6 negatively regulated ferroptosis by transcriptionally suppressing SOCS1/p53 and DMT1 pathways. MJT suppressed the DMT1 and SOCS1/p53 via stimulating STAT6 phosphorylation. In addition, STAT6 knockout exacerbated atherosclerosis and ferroptosis, which abolished the antiatherogenic and anti-ferroptotic effects of MJT. CONCLUSION: STAT6 acts as a negative regulator of ferroptosis and atherosclerosis via transcriptionally suppressing DMT1 and SOCS1 expression and MJT attenuates atherosclerosis and ferroptosis by activating the STAT6-mediated inhibition of DMT1 and SOCS1/p53 pathways, which indicated that STAT6 acts a novel promising therapeutic target to ameliorate atherosclerosis by inhibiting ferroptosis and MJT can serve as a new therapy for atherosclerosis treatment.


Asunto(s)
Aterosclerosis , Proteínas de Transporte de Catión , Medicamentos Herbarios Chinos , Ferroptosis , Factor de Transcripción STAT6 , Proteína 1 Supresora de la Señalización de Citocinas , Animales , Ferroptosis/efectos de los fármacos , Aterosclerosis/tratamiento farmacológico , Factor de Transcripción STAT6/metabolismo , Masculino , Medicamentos Herbarios Chinos/farmacología , Ratones , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Transducción de Señal/efectos de los fármacos , Receptores de LDL/metabolismo , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Ratones Noqueados
9.
J Adv Res ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38432393

RESUMEN

INTRODUCTION: Vascular calcification, a devastating vascular complication accompanying atherosclerotic cardiovascular disease and chronic kidney disease, increases the incidence of adverse cardiovascular events and compromises the efficacy of vascular interventions. However, effective therapeutic drugs and treatments to delay or prevent vascular calcification are lacking. OBJECTIVES: This study was designed to test the therapeutic effects and mechanism of Moscatilin (also known as dendrophenol) from Dendrobium huoshanense (an eminent traditional Chinese medicine) in suppressing vascular calcification in vitro, ex vivo and in vivo. METHODS: Male C57BL/6J mice (25-week-old) were subjected to nicotine and vitamin D3 (VD3) treatment to induce vascular calcification. In vitro, we established the cellular model of osteogenesis of human aortic smooth muscle cells (HASMCs) under phosphate conditions. RESULTS: By utilizing an in-house drug screening strategy, we identified Moscatilin as a new naturally-occurring chemical entity to reduce HASMC calcium accumulation. The protective effects of Moscatilin against vascular calcification were verified in cultured HASMCs. Unbiased transcriptional profiling analysis and cellular thermal shift assay suggested that Moscatilin suppresses vascular calcification via binding to interleukin 13 receptor subunit A2 (IL13RA2) and augmenting its expression. Furthermore, IL13RA2 was reduced during HASMC osteogenesis, thus promoting the secretion of inflammatory factors via STAT3. We further validated the participation of Moscatilin-inhibited vascular calcification by the classical WNT/ß-catenin pathway, among which WNT3 played a key role in this process. Moscatilin mitigated the crosstalk between WNT3/ß-catenin and IL13RA2/STAT3 to reduce osteogenic differentiation of HASMCs. CONCLUSION: This study supports the potential of Moscatilin as a new naturally-occurring candidate drug for treating vascular calcification via regulating the IL13RA2/STAT3 and WNT3/ß-catenin signalling pathways.

10.
Nat Commun ; 15(1): 2583, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519498

RESUMEN

Alternative polyadenylation can occur in introns, termed intronic polyadenylation (IPA), has been implicated in diverse biological processes and diseases, as it can produce noncoding transcripts or transcripts with truncated coding regions. However, a reliable method is required to accurately characterize IPA. Here, we propose a computational method called InPACT, which allows for the precise characterization of IPA from conventional RNA-seq data. InPACT successfully identifies numerous previously unannotated IPA transcripts in human cells, many of which are translated, as evidenced by ribosome profiling data. We have demonstrated that InPACT outperforms other methods in terms of IPA identification and quantification. Moreover, InPACT applied to monocyte activation reveals temporally coordinated IPA events. Further application on single-cell RNA-seq data of human fetal bone marrow reveals the expression of several IPA isoforms in a context-specific manner. Therefore, InPACT represents a powerful tool for the accurate characterization of IPA from RNA-seq data.


Asunto(s)
Poliadenilación , ARN , Humanos , Poliadenilación/genética , Intrones/genética , Análisis de Secuencia de ARN , RNA-Seq
11.
Waste Manag ; 177: 243-251, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350297

RESUMEN

Traditional methods of producing organic fertilizers result in significant nutrient loss and greenhouse gas emissions, making it challenging to align with sustainable development and the achievement of net-zero emissions goals. Hydrothermal cracking, as a novel clean technology for the utilization of organic waste into fertilizer, has been extensively studied and refined in laboratory settings, but its large-scale industrial evaluation remains limited. This study investigates the properties and field application of hydrothermal cracking solid organic fertilizer (HCSOF) produced at a pilot scale with an annual output of 10,000 tons. The results indicate that the organic matter content and total nutrient content (TN + P2O5 + K2O) of HCSOF reached 50.6 % and 5.46 %, respectively, which are 20.6 % and 1.46 % higher than the standards for organic fertilizers in China. Additionally, contaminants such as pathogens and antibiotics in the product were completely eliminated. Elemental analysis and pore size distribution highlighted the unique adsorptive attributes of HCSOF, which showed significant effect in reducing soil ammonium nitrogen. Results from field trials indicate that the complete substitution of chemical fertilizers with HCSOF did not reduce corn yield, which remained at 9.03 t/ha. Particularly, compared to the exclusive use of chemical fertilizers, HCSOF treatments resulted in a 7.03 % and 4.70 % decrease in fresh corn lodging and disease incidence, respectively. Antibacterial tests further confirmed its ability to counter pathogens. This study provides robust evidence for scaling up hydrothermal cracking fertilizer production from laboratory to industrial levels. Future research should focus on multi-batch sampling and extended field experiments.


Asunto(s)
Fertilizantes , Zea mays , Adsorción , Antibacterianos , China
12.
Genome Med ; 16(1): 30, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347596

RESUMEN

BACKGROUND: Biological processes are controlled by groups of genes acting in concert. Investigating gene-gene interactions within different cell types can help researchers understand the regulatory mechanisms behind human complex diseases, such as tumors. METHODS: We collected extensive single-cell RNA-seq data from tumors, involving 563 patients with 44 different tumor types. Through our analysis, we identified various cell types in tumors and created an atlas of different immune cell subsets across different tumor types. Using the SCINET method, we reconstructed interactome networks specific to different cell types. Diverse functional data was then integrated to gain biological insights into the networks, including somatic mutation patterns and gene functional annotation. Additionally, genes with prognostic relevance within the networks were also identified. We also examined cell-cell communications to investigate how gene interactions modulate cell-cell interactions. RESULTS: We developed a data portal called CellNetdb for researchers to study cell-type-specific interactome networks. Our findings indicate that these networks can be used to identify genes with topological specificity in different cell types. We also found that prognostic genes can deconvolved into cell types through analyzing network connectivity. Additionally, we identified commonalities and differences in cell-type-specific networks across different tumor types. Our results suggest that these networks can be used to prioritize risk genes. CONCLUSIONS: This study presented CellNetdb, a comprehensive repository featuring an atlas of cell-type-specific interactome networks across 44 human tumor types. The findings underscore the utility of these networks in delineating the intricacies of tumor microenvironments and advancing the understanding of molecular mechanisms underpinning human tumors.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Redes Reguladoras de Genes , Microambiente Tumoral/genética
13.
Cell Biol Toxicol ; 40(1): 10, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319449

RESUMEN

Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.


Asunto(s)
Antígenos CD36 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ácidos Grasos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt , Antígenos CD36/genética
14.
ACS Chem Biol ; 19(3): 725-735, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38340055

RESUMEN

With the recognition of the endogenous signaling roles and pharmacological functions of carbon monoxide (CO), there is an increasing need to understand CO's mechanism of actions. Along this line, chemical donors have been introduced as CO surrogates for ease of delivery, dosage control, and sometimes the ability to target. Among all of the donors, two ruthenium-carbonyl complexes, CORM-2 and -3, are arguably the most commonly used tools for about 20 years in studying the mechanism of actions of CO. Largely based on data using these two CORMs, there has been a widely accepted inference that the upregulation of heme oxygenase-1 (HO-1) expression is one of the key mechanisms for CO's actions. However, recent years have seen reports of very pronounced chemical reactivities and CO-independent activities of these CORMs. We are interested in examining this question by conducting comparative studies using CO gas, CORM-2/-3, and organic CO donors in RAW264.7, HeLa, and HepG2 cell cultures. CORM-2 and CORM-3 treatment showed significant dose-dependent induction of HO-1 compared to "controls," while incubation for 6 h with 250-500 ppm CO gas did not increase the HO-1 protein expression and mRNA transcription level. A further increase of the CO concentration to 5% did not lead to HO-1 expression either. Additionally, we demonstrate that CORM-2/-3 releases minimal amounts of CO under the experimental conditions. These results indicate that the HO-1 induction effects of CORM-2/-3 are not attributable to CO. We also assessed two organic CO prodrugs, BW-CO-103 and BW-CO-111. BW-CO-111 but not BW-CO-103 dose-dependently increased HO-1 levels in RAW264.7 and HeLa cells. We subsequently studied the mechanism of induction with an Nrf2-luciferase reporter assay, showing that the HO-1 induction activity is likely due to the activation of Nrf2 by the CO donors. Overall, CO alone is unable to induce HO-1 or activate Nrf2 under various conditions in vitro. As such, there is no evidence to support attributing the HO-1 induction effect of the CO donors such as CORM-2/-3 and BW-CO-111 in cell culture to CO. This comparative study demonstrates the critical need to consider possible CO-independent effects of a chemical CO donor before attributing the observed biological effects to CO. It is also important to note that such in vitro results cannot be directly extrapolated to in vivo studies because of the increased level of complexity and the likelihood of secondary and/or synergistic effects in the latter.


Asunto(s)
Hemo-Oxigenasa 1 , Compuestos Organometálicos , Humanos , Hemo-Oxigenasa 1/metabolismo , Células HeLa , Factor 2 Relacionado con NF-E2/metabolismo , Compuestos Organometálicos/farmacología , Técnicas de Cultivo de Célula , Monóxido de Carbono/farmacología , Monóxido de Carbono/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-38326979

RESUMEN

BACKGROUND AND AIM: The study aims to evaluate the feasibility of body mass index (BMI)-based individualized small bowel preparation for computed tomography enterography (CTE). METHODS: In this prospective randomized controlled study, patients undergoing CTE were randomly assigned to the individualized group or standardized group. Those in individualized group were given different volumes of mannitol solution based on BMI (1000 mL for patients with BMI < 18.5 kg/m2 , 1500 mL for patients with 18.5 kg/m2  ≤ BMI < 25 kg/m2 and 2000 mL for patients with BMI ≥ 25 kg/m2 ) while patients in the standardized group were all asked to consume 1500-mL mannitol solution. CTE images were reviewed by two experienced radiologists blindly. Each segment of the small bowel was assessed for small bowel image quality and disease detection rates. Patients were invited to record a diary regarding adverse events and acceptance. RESULTS: A total of 203 patients were enrolled and randomly divided into two groups. For patients with BMI < 18.5 kg/m2 , 1000-mL mannitol solution permitted a significantly lower rate of flatulence (P = 0.045) and defecating frequency (P = 0.011) as well as higher acceptance score (P = 0.015), but did not affect bowel image quality and diseases detection compared with conventional dosage. For patients with BMI ≥ 25 kg/m2 , 2000-mL mannitol solution provided better overall image quality (P = 0.033) but comparable rates of adverse events and patients' acceptance compared with conventional dosage. CONCLUSIONS: Individualized bowel preparation could achieve both satisfactory image quality and patients' acceptance thus might be an acceptable alternative in CTE.

16.
Appl Microbiol Biotechnol ; 108(1): 132, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38229329

RESUMEN

Plasmids are the primary vectors for intercellular transfer of the oxazolidinone and phenicol cross-resistance gene optrA, while insertion sequences (ISs) are mobile genetic elements that can mobilize plasmid-borne optrA intracellularly. However, little is known about how the IS-mediated intracellular mobility facilitates the dissemination of the optrA gene between plasmid categories that vary in transfer abilities, including non-mobilizable, mobilizable, and conjugative plasmids. Here, we performed a holistic genomic study of 52 optrA-carrying plasmids obtained from searches guided by the Comprehensive Antibiotic Resistance Database. Among the 132 ISs identified within 10 kbp from the optrA gene in the plasmids, IS6 family genes were the most prevalent (86/132). Homologous gene arrays containing IS6 family genes were shared between different plasmids, especially between mobilizable and conjugative plasmids. All these indicated the central role of IS6 family genes in disseminating plasmid-borne optrA. Thirty-three of the 52 plasmids were harbored by Enterococcus faecalis found mainly in humans and animals. By Nanopore sequencing and inverse PCR, the potential of the enterococcal optrA to be transmitted from a mobilizable plasmid to a conjugative plasmid mediated by IS6 family genes was further confirmed in Enterococcus faecalis strains recovered from the effluents of anaerobic digestion systems for treating chicken manure. Our findings highlight the increased intercellular transfer abilities and dissemination risk of plasmid-borne optrA gene caused by IS-mediated intracellular mobility, and underscore the importance of routinely monitoring the dynamic genetic contexts of clinically important antibiotic resistance genes to effectively control this critical public health threat. KEY POINTS: • IS6 was prevalent in optrA-plasmids varying in intercellular transfer abilities. • Enterococcal optrA-plasmids were widespread among human, animal, and the environment. • IS6 elevated the dissemination risk of enterococcal optrA-plasmids.


Asunto(s)
Elementos Transponibles de ADN , Genes Bacterianos , Animales , Humanos , Farmacorresistencia Bacteriana/genética , Plásmidos/genética , Antibacterianos/farmacología , Enterococcus , Enterococcus faecalis/genética , Pruebas de Sensibilidad Microbiana
17.
Gynecol Obstet Invest ; 89(1): 1-10, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38081153

RESUMEN

OBJECTIVE: This meta-analysis aimed to comprehensively evaluate the diagnostic use of erythrocyte membrane protein band 4.1like3 (EPB41L3) methylation detection in cervical cancer (CC) and its precancerous lesions. METHODS: CNKI, Wanfang, Cochrane Library, PubMed, and Ovid databases were searched using a combination of subject headings and free words. Pertinent data were retrieved after screening for inclusion and exclusion criteria, and the quality of the included studies was evaluated using QUADAS-2 criteria. The appropriate software was used for heterogeneity analysis and combined effect size calculation. Additionally, sensitivity analysis was used to evaluate the robustness of the combined results, and meta-regression and subgroup analysis were conducted to investigate the origins of heterogeneity. RESULTS: This meta-analysis included six studies, including 525 healthy individuals, 182 cervical intraepithelial neoplasia 1 (CIN1) samples, 182 CIN2 samples, 281 CIN3 samples, and 226 CC samples. EPB41L3 methylation detection for CIN2 and above lesions demonstrated combined sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR), and the area under the curve of the comprehensive receiver operating characteristic curve of 0.67, 0.76, 3.19, 0.41, 7.60, and 0.80, respectively; CIN3 and above lesions demonstrated these evaluations at 0.73, 0.84, 4.35, 0.33, 23.94, and 0.90, respectively. Meta-regression analysis revealed that the population, time, sample type, detection method, literature quality, and sample size were not significant sources of heterogeneity affecting the combined diagnostic efficacy of CIN2 and above lesions (p > 0.05). Subgroup analysis revealed higher combined diagnostic values of CIN2 and above lesions in retrospective studies, tissue samples, and Chinese populations, with DORs of 41.03, 14.59, and 13.70, respectively. CONCLUSION: EPB41L3 methylation demonstrated a relatively low diagnostic performance in CC and precancerous lesions. However, it merits further investigation as a potential biomarker. Integrating it with multiple gene detection, human papillomavirus testing, and ThinPrep liquid-based cytology test examination is recommended to explore improved diagnostic strategies for CC and its precancerous lesions.


Asunto(s)
Infecciones por Papillomavirus , Lesiones Precancerosas , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Estudios Retrospectivos , Metilación de ADN , Displasia del Cuello del Útero/patología , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/genética , Infecciones por Papillomavirus/diagnóstico , Detección Precoz del Cáncer , Proteínas de Microfilamentos/genética
18.
J Ethnopharmacol ; 321: 117292, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806537

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine views kidney shortage as a significant contributor to the aetiology of Parkinson's disease (PD), a neurodegenerative condition that is closely linked to aging. In clinical, patients with Parkinson's disease are often treated with Testudinis Carapax et Plastrum (Plastrum Testudinis, PT), a traditional Chinese medication that tonifies the kidney. Previous research has demonstrated that ethyl stearate (PubChem CID: 8122), an active component of Plastrum Testudinis Extracted with ethyl acetate (PTE), may encourage neural stem cells (NSCs) development into dopaminergic (DAergic) neurons. However, the effectiveness and mechanism of cotransplantation of ethyl stearate and NSCs in treating PD model rats still require further investigation. AIM OF THE STUDY: PD is a neurodegenerative condition marked by the loss and degradation of dopaminergic neurons in the substantia nigra of the midbrain. Synaptic damage is also a critical pathology in PD. Because of their self-renewal, minimal immunogenicity, and capacity to differentiate into dopaminergic (DAergic) neurons, NSCs are a prospective treatment option for Parkinson's disease cell transplantation therapy. However, encouraging transplanted NSCs to differentiate into dopaminergic neurons and enhancing synaptic plasticity in vivo remains a significant challenge in improving the efficacy of NSCs transplantation for PD. This investigation seeks to examine the efficacy of cotransplantation of NSCs and ethyl stearate in PD model rats and its mechanism related to synaptic plasticity. MATERIALS AND METHODS: On 6-hydroxydopamine-induced PD model rats, we performed NSCs transplantation therapy and cotransplantation therapy involving ethyl stearate and NSCs. Rotating behavior induced by apomorphine (APO) and pole climbing tests were used to evaluate behavioral changes. Using a variety of methods, including Western blotting (WB), immunofluorescence analysis, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction (qRT-PCR), we examined the function and potential molecular mechanisms of ethyl stearate in combined NSCs transplantation therapy. RESULTS: In the rat PD model, cotransplantation of ethyl stearate with NSCs dramatically reduced motor dysfunction, restored TH protein levels, and boosted dopamine levels in the striatum, according to our findings. Furthermore, the expression levels of SYN1 and PSD95, markers of synaptic plasticity, and BDNF, closely related to synaptic plasticity, were significantly increased. Cotransplantation with ethyl stearate and NSCs also increased the expression levels of Dopamine Receptor D1 (Drd1), an important receptor in the dopamine neural circuit, accompanied by an increase in MMP9 levels, ERK1/2 phosphorylation levels, and c-fos protein levels. CONCLUSIONS: According to the results of our investigation, cotransplantation of ethyl stearate and NSCs significantly improves the condition of PD model rats. We found that cotransplantation of ethyl stearate and NSCs may promote the expression of MMP9 by regulating the Drd1-ERK-AP-1 pathway, thus improving synaptic plasticity after NSCs transplantation. These findings provide new experimental support for the treatment of PD with the kidney tonifying Chinese medicine Plastrum Testudinis and suggest a potential therapeutic strategy for PD based on cotransplantation therapy.


Asunto(s)
Células-Madre Neurales , Enfermedad de Parkinson , Humanos , Ratas , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Factor de Transcripción AP-1/metabolismo , Sistema de Señalización de MAP Quinasas , Ratas Sprague-Dawley , Células-Madre Neurales/metabolismo , Neuronas Dopaminérgicas/patología , Modelos Animales de Enfermedad
19.
Inflamm Bowel Dis ; 30(1): 114-124, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37454276

RESUMEN

BACKGROUND: Mucosal healing is one of the principal therapeutic targets for ulcerative colitis (UC). Mitochondria are dynamic organelles that undergo constant fusion and fission; however, the process that is most conducive to mucosal healing remains unclear. This study investigated the role of mitochondrial fission in mucosal healing in UC patients. METHODS: Quantitative polymerase chain reaction, Western blotting, and immunostaining were used to detect mitochondrial fission in UC patients and a dextran sulfate sodium-induced colitis model. Colonic organoids were used to investigate the role of mitochondrial fission in butyrate metabolism. Enzyme activity assays were performed to identify the key proteins involved in this mechanism. RESULTS: It was found that inhibition of mitochondrial fission promoted mucosal healing in mice and that there was an increase in mitochondrial fission in colonic epithelial cells of UC patients. Excessive fission inhibits stem cell proliferation by impairing butyrate metabolism in colonic organoids. The mitochondrial fission antagonist P110 failed to promote mucosal healing in antibiotic-treated mice, and the addition of exogenous butyrate reversed this effect. Increased butyrate exposure in the colonic stem cell niche has also been observed in UC patients. Mechanistically, enzyme activity assays on colonic organoids revealed that excessive fission inhibits mitochondrial acetoacetyl-CoA thiolase activity via reactive oxygen species. CONCLUSIONS: Collectively, these data indicate that excessive mitochondrial fission suppresses mucosal repair by inhibiting butyrate metabolism and provides a potential target for mucosal healing in patients with ulcerative colitis.


Asunto(s)
Colitis Ulcerosa , Humanos , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Dinámicas Mitocondriales , Mucosa Intestinal/metabolismo , Butiratos/farmacología , Butiratos/metabolismo
20.
Gastrointest Endosc ; 99(2): 155-165.e4, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37820930

RESUMEN

BACKGROUND AND AIMS: The lack of tissue traction and instrument dexterity to allow for adequate visualization and effective dissection were the main issues in performing endoscopic submucosal dissection (ESD). Robot-assisted systems may provide advantages. In this study we developed a novel transendoscopic telerobotic system and evaluated its performance in ESD. METHODS: A miniature dual-arm robotic endoscopic assistant for minimally invasive surgery (DREAMS) was developed. The DREAMS system contained the current smallest robotic ESD instruments and was compatible with the commercially available dual-channel endoscope. After the system was established, a prospective randomized controlled study was conducted to validate the performance of the DREAMS-assisted ESD in terms of efficacy, safety, and workload by comparing it with the conventional technique. RESULTS: Two robotic instruments can achieve safe collaboration and provide sufficient visualization and efficient dissection during ESD. Forty ESDs in the stomach and esophagus of 8 pigs were completed by DREAMS-assisted ESD or conventional ESD. Submucosal dissection time was comparable between the 2 techniques, but DREAMS-assisted ESD demonstrated a significantly lower muscular injury rate (15% vs 50%, P = .018) and workload scores (22.30 vs 32.45, P < .001). In the subgroup analysis of esophageal ESD, DREAMS-assisted ESD showed significantly improved submucosal dissection time (6.45 vs 16.37 minutes, P = .002), muscular injury rate (25% vs 87.5%, P = .041), and workload (21.13 vs 40.63, P = .001). CONCLUSIONS: We developed a novel transendoscopic telerobotic system, named DREAMS. The safety profile and technical feasibility of ESD were significantly improved with the assistance of the DREAMS system, especially in the narrower esophageal lumen.


Asunto(s)
Resección Endoscópica de la Mucosa , Procedimientos Quirúrgicos Robotizados , Animales , Resección Endoscópica de la Mucosa/instrumentación , Resección Endoscópica de la Mucosa/métodos , Esófago/cirugía , Estudios Prospectivos , Estómago/cirugía , Porcinos , Resultado del Tratamiento , Procedimientos Quirúrgicos Robotizados/instrumentación , Procedimientos Quirúrgicos Robotizados/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...