Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114535, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39088322

RESUMEN

Cartilage maintains the structure and function of joints, with disturbances leading to potential osteoarthritis. N6-methyladenosine (m6A), the most widespread post-transcriptional modification in eukaryotes, plays a crucial role in regulating biological processes. While current research has indicated that m6A affects the progression of osteoarthritis, its function in the development and homeostasis of articular cartilage remains unclear. Here we report that Mettl3 deficiency in chondrocytes leads to mandibular condylar cartilage morphological alterations, early temporomandibular joint osteoarthritis, and diminished adaptive response to abnormal mechanical stimuli. Mechanistically, METTL3 modulates Lats1 mRNA methylation and facilitates its degradation in an m6A-YTHDF2-dependent manner, which subsequently influences the degradation and nuclear translocation of YAP1. Intervention with the Hippo pathway inhibitor XMU-MP-1 alleviates condylar abnormality caused by Mettl3 knockout. Our findings demonstrate the role of METTL3 in cartilage development and homeostasis, offering insights into potential treatment strategies for osteoarthritis.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38794847

RESUMEN

OBJECTIVES: To analyze changes in bone dimensions and their modulating factor in bone dimensions 6 months after horizontal ridge augmentation using autogenous bone grafts. MATERIALS AND METHODS: Thirty-eight patients with horizontally atrophic alveolar ridges of a single edentulous tooth at the maxillary anterior site were divided into two groups based on the fixation position of the bone block during ridge augmentation surgery (H0, vertical distance from the upper edge of the bone block to the alveolar crest). Patients were classified into a crestal level (CL) group if H0 ≤ 1 mm and a sub-crestal level (SCL) group if H0 > 1 mm. The width and height of the alveolar ridge were recorded using CBCT both before and 6 months after the augmentation procedure. RESULTS: The CL group comprised 20 patients with 23 implants, whereas the SCL group comprised 18 patients with 22 implants. All the augmentation sites exhibited vertical bone resorption. Vertical bone resorption in the SCL group (1.94 ± 2.11 mm) was significantly higher than that of the CL group (0.61 ± 0.64 mm). The SCL group showed significantly lower horizontal bone gain than the CL group (SCL: 1.02 ± 2.30 mm; CL: 3.19 ± 3.17 mm) at the cervical level. Peri-implant marginal bone loss increased significantly in the SCL group (1.00 ± 2.71 mm) compared to the CL group (0.64 ± 0.40 mm). CONCLUSION: The bone height decreased after horizontal ridge augmentation using autogenous onlay grafting. The fixation position of the bone block was a modulating factor. The SCL group showed more vertical bone loss, less horizontal bone gain 6 months after surgery, and more marginal bone loss after restoration.

3.
Clin Oral Implants Res ; 35(3): 282-293, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38108637

RESUMEN

OBJECTIVES: To identify the risk indicators and develop and validate a nomogram prediction model of implant apical non-coverage by comprehensively analyzing clinical and radiographic factors in bone-added transcrestal sinus floor elevation (TSFE). MATERIAL AND METHODS: A total of 260 implants in 195 patients receiving bone-added TSFE were included in the study. The population was divided into a development (180 implants) and a validation (80 implants) cohort. According to 6 months post-surgery radiographic images, implants were categorized as "apical non-coverage" or "apical covered." The association of risk factors including clinical and radiographic parameters with implant apical non-coverage was assessed using regression analyses. A nomogram prediction model was developed, and its validation and discriminatory ability were analyzed. RESULTS: The nomogram predicting bone-added TSFE's simultaneously placed implant's apex non-coverage after 6 months. This study revealed that sinus angle, endo-sinus bone gain, implant protrusion length, graft contact walls, and distal angle were predictors of implant apical non-coverage. The generated nomogram showed a strong predictive capability (area under the curve [AUC] = 0.845), confirmed by internal validation using 10-fold cross-validation (Median AUC of 0.870) and temporal validation (AUC = 0.854). The calibration curve and decision curve analysis demonstrated good performance and high net benefit of the nomogram, respectively. CONCLUSIONS: The clinical implementation of the present nomogram is suitable for predicting the apex non-coverage of implants placed simultaneously with bone-added TSFE after 6 months.


Asunto(s)
Implantes Dentales , Elevación del Piso del Seno Maxilar , Humanos , Implantación Dental Endoósea/métodos , Elevación del Piso del Seno Maxilar/métodos , Estudios Retrospectivos , Nomogramas , Seno Maxilar/diagnóstico por imagen , Seno Maxilar/cirugía
4.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-821712

RESUMEN

@#Currently, computer-aided implant surgeries include implant placement surgery under the guidance of a dynamic navigation system. With the use of software inherent in the navigation system, doctors can make a preoperative plan including the ideal position of the implant. Then the plan can be accurately transferred to the surgery, during which the real-time condition of the drill and its relationship with the surgical region will be visualized by the surgeon and the drill can be adjusted in a timely manner. Currently the dynamic navigation system is increasingly widely utilized, especially in cases of esthetic zones or surgical sites with important anatomical structures. However, the clinical workflow of the navigation system is complicated, including CBCT taken after the registration device placement, prosthetic-driven 3D design, calibration, registration, navigated borehole preparation and implant placement surgery. Many details should be considered when the device is applied, including implant position design, fixation of the tracking device, registration, and stable borehole preparation under the guidance of dynamic navigation. Therefore, this article introduces the dynamic navigation system into the clinical workflow and evaluates, the effects of the application and the clinical features. The new progress of the navigation system in the field of implantology is demonstrated at the same time, including navigated surgery in fully edentulous arches and in the zygomatic zone. Further improvements in the navigation system in terms of the accuracy and simplification of the workflow are needed in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA