Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Med Sci ; 10(4): 717-24, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25276156

RESUMEN

INTRODUCTION: The aim of this study was to compare the efficacy and toxicity of dicycloplatin plus paclitaxel with those of carboplatin plus paclitaxel as first-line treatment for patients with advanced non-small-cell lung cancer (NSCLC). MATERIAL AND METHODS: In this study, 240 NSCLC patients with stage IIIB (with pleural effusion) and stage IV disease were randomly assigned (1: 1) to receive dicycloplatin 450 mg/m(2) or carboplatin AUC = 5, in combination with paclitaxel 175 mg/m(2) (D + P or C + P) every 3 weeks for up to 4 to 6 cycles. The primary endpoint was response rate. Secondary endpoints included progression-free survival (PFS), overall survival (OS) and adverse events. RESULTS: The response rates for the D + P and C + P arm were 36.44% and 30.51%, respectively (p = 0.33). The median PFS was 5.6 months in the D + P arm and 4.7 months in the C + P arm (p = 0.31). The median OS was 14.9 months for D + P and 12.9 months for C + P (p = 0.37). Adverse events in the two arms were well balanced. The most common grade 3/4 adverse event was hematologic toxicity. CONCLUSIONS: Patients treated with D + P had similar response and survival rates to those treated with C + P, and toxicities of both treatments were generally tolerable.

2.
Int J Clin Pharmacol Ther ; 51(2): 96-105, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23127487

RESUMEN

UNLABELLED: TRANSLATIONAL RELEVANCE: Dicycloplatin (DCP) is a novel super molecule composed of carboplatin (CBP) and 1,1-cyclobutane dicarboxylate (CBDCA) joined by a strong hydrogen bond. The solubility and stability of platinum complexes have a direct bearing on their activity, toxicity and pharmacokinetics. Preclinical studies have shown that DCP overcomes the problem of CBP instability in aqueous solution and maintains anticancer effects. Clinical evaluation in a Phase I dose-escalation study in patients with tumors showed that DCP was tolerated at doses ranging from 100 to 550 mg/m(2) and had potential efficacy in Chinese cancer patients. DCP showed favourable bioavailability and stability in vivo, and the recommended Phase II dosage for DCP-containing chemotherapy is 450 mg/m(2). DCP is currently being investigated as a monotherapy in several cancer types, such as prostatic carcinoma, and in combination with paclitaxel in a Phase II non-lung cancer study. PURPOSE: Dicycloplatin (DCP) is a novel supramolecule composed of carboplatin (CBP) and 1,1-cyclobutane dicarboxylate (CBDCA) joined by a strong hydrogen bond. DCP is stable in aqueous solution unlike CBP alone. The purpose of this study was to assess the maximally tolerated dose, safety, and pharmacokinetics of DCP in Chinese cancer patients. EXPERIMENTAL DESIGN: 29 patients were included in this study. DCP was administered by intravenous infusion over 1 hour once every 21 days. The dose of DCP was escalated from 50 mg/m(2) to 650 mg/m(2) using a modified Fibonacci scheme. Pharmacokinetic analysis was performed in 26 patients to determine the total and ultrafiltered platinum concentrations in plasma. RESULTS: 29 and 20 patients were evaluated for toxicities and response, respectively. The primary adverse effects were nausea/vomiting (58.6%), thrombocytopenia (24.1%), neutropenia (17.2%), anemia (20.7%), fatigue (10.3%), anorexia (10.3%), liver enzyme elevation (10.3%) and alopecia (3.5%). There was no significant toxicity with doses up to 350 mg/m(2). At higher doses, a variety of dose-limiting toxicities (DLTs) were observed, including Grade 3/4 anemia, Grade 3/4 thrombocytopenia, and Grade 3/4 emesis under antiemetic treatment. The maximum tolerated dose of DCP was 550 mg/m(2). Two partial responses occurred in patients with non-cell lung cancer who had received cisplatin- or carboplatin-based chemotherapy. Plasma decay of total and free platinum concentrations was best fitted by using a twocompartment analysis. The terminal plasma half-life of total platinum after DCP administration ranged from 41.86 to 77.20 hours without significant dose dependency. However, the terminal plasma half-life of free platinum concentrations ranged from 42.34 to 61.07 hours. CONCLUSIONS: DCP displayed a favorable safety profile at doses between 50 mg/m(2) and 550 mg/m(2), and first efficacy signals were observed. DLTs were thrombocytopenia, anemia and emesis. The recommended starting dose for a subsequent Phase II study is 450 mg/m(2) once every 3 weeks.


Asunto(s)
Carboplatino/efectos adversos , Carboplatino/farmacocinética , Ciclobutanos/efectos adversos , Ciclobutanos/farmacocinética , Ácidos Dicarboxílicos/efectos adversos , Ácidos Dicarboxílicos/farmacocinética , Neoplasias/tratamiento farmacológico , Adulto , Anciano , Anemia/inducido químicamente , Antineoplásicos/efectos adversos , Antineoplásicos/sangre , Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carboplatino/sangre , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , China , Ciclobutanos/sangre , Ácidos Dicarboxílicos/sangre , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Combinación de Medicamentos , Femenino , Humanos , Infusiones Intravenosas , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Náusea/inducido químicamente , Neoplasias/sangre , Neutropenia/inducido químicamente , Platino (Metal)/sangre , Trombocitopenia/inducido químicamente , Vómitos/inducido químicamente
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(8): 2171-5, 2011 Aug.
Artículo en Chino | MEDLINE | ID: mdl-22007411

RESUMEN

The spectrum properties of four novel 1, 4, 8, 11, 15, 18, 22, 25-octaoxybutyl copper phthalocyanine; 1,4,8,11,15,18, 22, 25-octamethoxybutanoate manganese phthalocyanine; 1, 4, 8, 11, 15, 18, 22, 25-octamethoxybutanoate copper phthalocyanine; 1, 4, 8, 11, 15, 18, 22, 25-octamethoxybutanoate zinc phthalocyanine were investigated by infrared, fluorescence and UV-visible spectrum in the the paper. There is no rule in the infrared spectrum of these octa-substituted phthalocyanines. The orders of the Q band, B band and Pc dimer band are different among the above Octa-substituted Phthalocyanines in the UV and fluorescence spectra. The reason is related to the interaction between the ligand and the central metal of these octa-substituted phthalocyanines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA