Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Sci Rep ; 14(1): 9264, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649705

RESUMEN

The implementation of a laparoscope-holding robot in minimally invasive surgery enhances the efficiency and safety of the operation. However, the extra robot control task can increase the cognitive load on surgeons. A suitable interface may simplify the control task and reduce the surgeon load. Foot interfaces are commonly used for commanding laparoscope-holding robots, with two control strategies available: decoupled control permits only one Cartesian axis actuation, known as decoupled commands; hybrid control allows for both decoupled commands and multiple axes actuation, known as coupled commands. This paper aims to determine the optimal control strategy for foot interfaces by investigating two common assumptions in the literature: (1) Decoupled control is believed to result in better predictability of the final laparoscopic view orientation, and (2) Hybrid control has the efficiency advantage in laparoscope control. Our user study with 11 experienced and trainee surgeons shows that decoupled control has better predictability than hybrid control, while both approaches are equally efficient. In addition, using two surgery-like tasks in a simulator, users' choice of decoupled and coupled commands is analysed based on their level of surgical experience and the nature of the movement. Results show that trainee surgeons tend to issue more commands than the more experienced participants. Single decoupled commands were frequently used in small view adjustments, while a mixture of coupled and decoupled commands was preferred in larger view adjustments. A guideline for foot interface control strategy selection is provided.


Asunto(s)
Laparoscopía , Procedimientos Quirúrgicos Robotizados , Cirujanos , Humanos , Laparoscopía/métodos , Laparoscopía/instrumentación , Procedimientos Quirúrgicos Robotizados/métodos , Laparoscopios , Robótica/métodos , Pie/cirugía
2.
J Agric Food Chem ; 72(10): 5237-5246, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427027

RESUMEN

In this study, egg yolk selenium peptides (Se-EYP) were prepared using double-enzyme hydrolysis combined with a shearing pretreatment. The properties of the selenopeptides formed were then characterized, including their yield, composition, molecular weight distribution, antioxidant activity, in vitro digestion, and immunomodulatory activity. The peptide yield obtained after enzymatic hydrolysis using a combination of alkaline protease and neutral protease was 74.5%, of which 82.6% had a molecular weight <1000 Da. The selenium content of the lyophilized solid product was 4.01 µg/g. Chromatography-mass spectrometry analysis showed that 88.6% of selenium in Se-EYP was in the organic form, of which SeMet accounted for 60.3%, SeCys2 for 21.8%, and MeSeCys for 17.9%. After being exposed to in vitro simulated digestion, Se-EYP still had 65.1% of oligopeptides present, and the in vitro antioxidant activity was enhanced. Moreover, Se-EYP exhibited superior immune detection indices, including immune organ index, level of immune factors in the serum, histopathological changes in the spleen, and selenium content in the liver. Our results suggest that Se-EYP may be used as selenium-enriched ingredients in functional food products.


Asunto(s)
Selenio , Selenio/análisis , Antioxidantes , Yema de Huevo/química , Péptidos/química
3.
Food Chem ; 447: 138951, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38489883

RESUMEN

Biocomplex materials formed by oppositely charged biopolymers (proteins) tend to be sensitive to environmental conditions and may lose part functional properties of original proteins, and one of the approaches to address these weaknesses is protein modification. This study established an electrostatic composite system using succinylated ovalbumin (SOVA) and ε-polylysine (ε-PL) and investigated the impact of varying degrees of succinylation and ε-PL addition on microstructure, environmental responsiveness and functional properties. Molecular docking illustrated that the most favorable binding conformation was that ε-PL binds to OVA groove, which was contributed by the multi­hydrogen bonding and hydrophobic interactions. Transmission electron microscopy observed that SOVA/ε-PL had a compact spherical structure with 100 nm. High-degree succinylation reduced complex sensitivity to heat, ionic strength, and pH changes. ε-PL improved the gel strength and antibacterial properties of SOVA. The study suggests possible uses of SOVA/ε-PL complex as multifunctional protein complex systems in the field of food additives.


Asunto(s)
Antibacterianos , Polilisina , Polilisina/química , Ovalbúmina , Electricidad Estática , Simulación del Acoplamiento Molecular
4.
J Pharm Biomed Anal ; 243: 116112, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513502

RESUMEN

The therapeutic effects of Chinese herbal compounds are often achieved through the synergistic interactions of multiple ingredients. However, current research predominantly focuses on individual ingredients, neglecting the holistic nature of Chinese herbal compounds. This study proposes a novel strategy to elucidate the pharmacodynamic material basis of Chinese herbal compounds based on their multi-components (components named 'ZuFen' in China, it refers to multiple ingredients with similar chemical structures) composition, using the Xian-Ling-Gu-Bao (XLGB) capsule as a case study. Cheminformatics-based components partitioning was conducted after sourcing ingredients from various databases, resulting in a total of 856 ingredients which were categorized into nine major components. Furthermore, the pharmacodynamic ingredients of XLGB capsule were determined by analyzing the ingredients that were absorbed into the bloodstream. Through a combination of these ingredients and screening for absorption, the Dipsacus asper saponin components, Psoralea corylifolia coumarin components, and Epimedium flavonoid polyglycosides components were isolated. The anti-osteoporosis efficacy of these components were evaluated in zebrafish, demonstrating their capability to reverse mineralization reduction caused by prednisolone. These findings further support the idea that these components serve as the material basis for the pharmacological efficacy of XLGB capsule. This study provides a novel systematic strategy for discovering the pharmacodynamic material basis of the efficacy of Chinese herbal compounds based on a 'multi-components' perspective.


Asunto(s)
Medicamentos Herbarios Chinos , Osteoporosis , Saponinas , Animales , Pez Cebra , Medicamentos Herbarios Chinos/química , Flavonoides , Osteoporosis/tratamiento farmacológico , Cromatografía Líquida de Alta Presión/métodos
5.
J Sci Food Agric ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441435

RESUMEN

BACKGROUND: Salted hen egg yolks are less oily and less flavorful than salted duck egg yolks. However, hen eggs have a more adequate market supply and have a broader application prospect than duck eggs. In the present study, egg yolks, plasma, and granules were dehydrated by adding 1% NaCl to simulate traditional curing process of salted egg yolk. The changes in the pickling process of hen egg yolks (HEY) and duck egg yolks (DEY) plasma and granules were compared to reveal the gelation mechanism and the underlying causes of quality differences in salted HEY and DEY. Salted HEY can be compared with the changes in DEY during the pickling process to provide a theoretical basis for the quality improvement of salted HEY to salted DEY. RESULTS: The results showed that both plasma and granules were involved in gel formation, but exhibited different aggregation behaviors. Based on the intermolecular forces, the HEY proteins achieved aggregation mainly through hydrophobic interactions and DEY proteins mainly through covalent binding. According to spin-spin relaxation time, HEY gels immobilized a large amount of lipid and interacted strongly with lipids. DEY gels showed much free lipid and had weak interaction with lipid. The microstructure showed that HEY proteins were easily unfolded to form a homogeneous three-dimensional gel network structure after salting, whereas heterogeneous aggregates were formed to hinder the gel development in DEY. Changes in protein secondary structure content showed that pickling can promote the transformation of the α-helices to ß-sheets structure in HEY gels, whereas more α-helices structure was formed in DEY gels. CONCLUSION: The present study has demonstrated that different gelation behaviors of hen and duck egg yolk proteins (especially in plasma) through salting treatment led to the difference in the quality of salted HEY and DEY. © 2024 Society of Chemical Industry.

6.
Clin Nutr ; 43(2): 453-467, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38181523

RESUMEN

BACKGROUND & AIMS: Short-term intensive fasting (STIF), known as beego in Chinese phonetic articulation, has been practiced for more than two thousand years. However, the potential risk of STIF and the body's response to the risk have not been adequately evaluated. This study aims to address this issue, focusing on the STIF-triggered metabolic response of the liver and kidney. METHODS: The STIF procedure in the clinical trial includes a 7-day water-only intensive fasting phase and a 7-day gradual refeeding phase followed by a regular diet. The intensive fasting in humans was assisted with psychological induction. To gain insights not available in the clinical trial, we designed a STIF program for mice that resulted in similar phenotypes seen in humans. Plasma metabolic profiling and examination of gene expression as well as liver and kidney function were performed by omics, molecular, biochemical and flow cytometric analyses. A human cell line model was also used for mechanistic study. RESULTS: Clinically significant metabolites of fat and protein were found to accumulate during the fasting phase, but they were relieved after gradual refeeding. Metabolomics profiling revealed a universal pattern in the consumption of metabolic intermediates, in which pyruvate and succinate are the two key metabolites during STIF. In the STIF mouse model, the accumulation of metabolites was mostly counteracted by the upregulation of catabolic enzymes in the liver, which was validated in a human cell model. Kidney filtration function was partially affected by STIF but could be recovered by refeeding. STIF also reduced oxidative and inflammatory levels in the liver and kidney. Moreover, STIF improved lipid metabolism in mice with fatty liver without causing accumulation of metabolites after STIF. CONCLUSIONS: The accumulation of metabolites induced by STIF can be relieved by spontaneous upregulation of catabolic enzymes, suggesting an adaptive and protective metabolic response to STIF stress in the mammalian body.


Asunto(s)
Dieta , Ayuno , Ratones , Humanos , Animales , Hígado/metabolismo , Metabolismo de los Lípidos , Mamíferos
7.
Int J Biol Macromol ; 259(Pt 2): 129298, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199555

RESUMEN

Seeking safe and environmentally friendly natural immunomodulators is a pressing requirement of humanity. This study investigated the differential binding characteristics of two polar polyphenols (PP), namely epicatechin (EC) and chlorogenic acid (CA), to ovotransferrin (OVT), and explored the relationship between structural transformations and immunomodulatory activity of OVT-PP complexes. Results showed that CA exhibited a stronger affinity for OVT than EC, mainly driven by hydrogen bonds and van der Waals forces. Complexation-induced conformational variations in OVT, including static fluorescence quenching, increased microenvironment polarity surrounding tryptophan and tyrosine residues, and the transition from disordered α-helix to stable ß-sheet. Furthermore, the structural conformation transformation of OVT-PP complexes facilitated the enhancement of immunomodulatory activity, with the OVT-CA (10:2) complex demonstrating the best immunomodulatory activity. Principal component analysis (PCA) and Pearson correlation analysis revealed the immunomodulatory activities of the OVT-PP complexes were influenced by surface hydrophobicity (negatively correlated), ß-sheet percentage and polyphenol binding constants. It could be inferred that PP complexation increased the surface polarity of OVT, consequently enhancing its immunomodulatory activity by promoting cell membrane affinity and antigen recognition. This study provides valuable guidance for effectively utilizing polyphenol-protein complexes in enhancing immunomodulatory activity.


Asunto(s)
Catequina , Conalbúmina , Ácido Clorogénico , Factores Inmunológicos/farmacología , Polifenoles/farmacología
8.
J Sci Food Agric ; 104(5): 2621-2629, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37985210

RESUMEN

BACKGROUND: The uses of egg white powder (EWP) are restricted because of its odor. It is necessary to find a method to improve its flavor. In this paper, three different antioxidants - green tea extract (GTE), sodium ascorbate (SA), and glutathione (GSH) - were selected to modify the flavor. The physicochemical and structural properties of EWP were investigated to study the mechanism of the formation and release of volatile compounds. RESULTS: Antioxidants can modify the overall flavor of EWP significantly, inhibiting the generation or release of nonanal, 3-methylbutanal, heptanal, decanal, geranyl acetone, and 2-pemtylfuran. A SA-EWP combination showed the lowest concentration of 'off' flavor compounds; GTE-EWP and GSH-EWP could reduce several 'off' flavor compounds but increased the formation of geranyl acetone and furans. The changes in the carbonyl content and the amino acid composition confirmed the inhibition of antioxidants with the oxidative degradation of proteins or characteristic amino acids. The results of fluorescence spectroscopy and Fourier transform infrared (FTIR) spectroscopy provided structural information regarding EWP, which showed the release of volatile compounds decreased due to structural changes. For example, the surface hydrophobicity increased and the protein aggregation state changed. CONCLUSIONS: Antioxidants reduce the 'off' flavor of EWP in two ways: they inhibit protein oxidation and Maillard reactions (they inhibit formation of 3-methylbutanal and 2-pemtylfuran) and they enhance the binding ability of heat-denatured proteins (reducing the release of nonanal, decanal, and similar compounds). © 2023 Society of Chemical Industry.


Asunto(s)
Aldehídos , Antioxidantes , Clara de Huevo , Terpenos , Antioxidantes/química , Clara de Huevo/química , Polvos , Aminoácidos
9.
J Hazard Mater ; 465: 133260, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38128230

RESUMEN

In this study, density function theory (DFT) is employed to compute Raman spectra of 40 important Perfluoroalkyl substances (PFASs) as listed in Draft Method 1633 by U.S. Environmental Protection Agent. A systematic comparison of their spectral features is conducted, and Raman peaks and vibrational modes are identified. The Raman spectral regions for the main chemical bonds (such as C-C, CF2 & CF3, O-H) and main functional groups (such as -COOH, -SO3H, -C2H4SO3H, and -SO2NH2) are identified and compared. The impacts of branching location in isomer, molecular chain length, and functional groups on the Raman spectra are analyzed. Particularly, the isomers of PFOA alter the peak locations slightly in wavenumber regions of 200 - 800 and 1000 - 1400 cm-1, while for PFOS, spectral features in the 230 - 360, 470 - 680, and 1030 - 1290 cm-1 regions exhibit significant difference. The carbon chain length can significantly increase the number of Raman peaks, while different functional groups give significantly different peak locations. To facilitate differentiation, a spectral database is constructed by introducing controlled noise into the DFT-computed Raman spectra. Subsequently, two chemometric techniques, principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), are applied to effectively distinguish among these spectra, both for 40 PFAS compounds and the isomers. The findings demonstrate the promising potential of combining Raman spectroscopy with advanced spectral analysis methods to discriminate between distinct PFAS compounds, holding significant implications for improved PFAS detection and characterization methodologies.

10.
Food Funct ; 15(1): 401-410, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38099483

RESUMEN

Fish collagen, derived from sustainable sources, offers a valuable substrate for generating peptides with diverse biofunctionalities. In this study, alkaline, papain, and ginger protease were used to enzymatically hydrolyze fish skin collagen. The peptide molecular weight distribution and sequence were measured using HPLC and ICP-MS-MS, with papain/alkaline protease (AP) and papain/alkaline/ginger protease (APG) hydrolyzed samples compared. As the results showed, the incorporation of ginger protease was useful for increasing the degree of hydrolysis, with the content of <400 Da peptides increasing from 49.82% to 58.56%. The identified peptide sequence in the APG sample had more proline at the C-terminal. The peptides were separated into two components (different in molecular weight) using gel column chromatography. The molecular weight distribution, amino acid composition, ACE inhibitory activity, and fibroblast proliferation activity of the collected components were measured. In comparison, the contents of proline and hydroxyproline in the larger peptides decreased obviously after combined hydrolysis by ginger protease, reflecting the formation of a peptide sequence of smaller molecular weight containing glycine and hydroxyproline. The combined hydrolysis of ginger protease was beneficial for the improvement of the ACE inhibitory activity of the sample. However, the fibroblast proliferation activity of AP was higher than that of APG, indicating that further hydrolysis by ginger protease may destroy the hydroxyproline at the end of the peptide sequence. This study proposed a creative directional hydrolysis method and provided practical guidance for the production of collagen peptides with enhanced functional activity.


Asunto(s)
Papaína , Péptidos , Animales , Hidrólisis , Hidroxiprolina , Papaína/metabolismo , Péptidos/química , Colágeno/metabolismo , Prolina , Relación Estructura-Actividad
11.
Chem Soc Rev ; 53(2): 1004-1057, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38116610

RESUMEN

Recently, there has been an exponential growth in the number of publications focusing on surface-enhanced Raman scattering (SERS), primarily driven by advancements in nanotechnology and the increasing demand for chemical and biological detection. While many of these publications have focused on the development of new substrates and detection-based applications, there is a noticeable lack of attention given to various practical issues related to SERS measurements and detection. This review aims to fill this gap by utilizing silver nanorod (AgNR) SERS substrates fabricated through the oblique angle deposition method as an illustrative example. The review highlights and addresses a range of practical issues associated with SERS measurements and detection. These include the optimization of SERS substrates in terms of morphology and structural design, considerations for measurement configurations such as polarization and the incident angle of the excitation laser, and exploration of enhancement mechanisms encompassing both intrinsic properties induced by the structure and materials, as well as extrinsic factors arising from wetting/dewetting phenomena and analyte size. The manufacturing and storage aspects of SERS substrates, including scalable fabrication techniques, contamination control, cleaning procedures, and appropriate storage methods, are also discussed. Furthermore, the review delves into device design considerations, such as well arrays, flow cells, and fiber probes, and explores various sample preparation methods such as drop-cast and immersion. Measurement issues, including the effect of excitation laser wavelength and power, as well as the influence of buffer, are thoroughly examined. Additionally, the review discusses spectral analysis techniques, encompassing baseline removal, chemometric analysis, and machine learning approaches. The wide range of AgNR-based applications of SERS, across various fields, is also explored. Throughout the comprehensive review, key lessons learned from collective findings are outlined and analyzed, particularly in the context of detailed SERS measurements and standardization. The review also provides insights into future challenges and perspectives in the field of SERS. It is our hope that this comprehensive review will serve as a valuable reference for researchers seeking to embark on in-depth studies and applications involving their own SERS substrates.

12.
Int J Nanomedicine ; 18: 7335-7358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38084126

RESUMEN

Purpose: Asperosaponin VI (ASP VI) as an active ingredient of Dipsacus asperoides, which has a wide range of biological and pharmacological activity. However, its development and application are restricted due to the poor gastrointestinal permeability and oral bioavailability. This investigation aims to reveal the influence of the self-assembled structure by the interaction between ASP VI and endogenous components NaTC and/or DOPC in the gastrointestinal environment on its biopharmaceutical properties, and novelty elucidated the molecular mechanism for the formation of self-assembled nanomicelles. Methods: This change in phase state in gastrointestinal fluids is characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). UPLC-Q-TOF-MS was used to analyze the composition of phase components and the exposure of nanomicelles in vivo. Molecular dynamics simulation (MDS) was applied to preliminarily elucidate the self-assembly mechanism of ASP VI in the gastrointestinal environment. Furthermore, theS8 promoting absorption mechanism of nanomicelles were investigated through in vivo pharmacokinetic experiments, parallel artificial membrane permeability assay (PAMPA), quadruple single-pass intestinal perfusion in rats, and Caco-2 cell monolayer model. Results: We demonstrated that the ASP VI could spontaneously form dynamic self-assembled structures with sodium taurocholate (NaTC) and dipalmitoyl phosphatidylcholine (DOPC) during gastrointestinal solubilization, which promoted the gastrointestinal absorption and permeability of ASP VI and increased its exposure in vivo, thus improving the biopharmacological characteristics of ASP VI. Moreover, ASP VI-NaTC-DOPC-self-assembled nanostructures (ASP VI-NaTC-DOPC-SAN) manifested higher cellular uptake in Caco-2 cells as evidenced by flow cytometry and confocal microscopy, and this study also preliminarily revealed the mechanism of self-assembly formation of ASP VI with endogenous components NaTC and DOPC driven by electrostatic and hydrogen bonding interactions. Conclusion: This study provides evidence that the dynamic self-assembled phase transition may play a key role in improving the biopharmacological characteristics of insoluble or low permeability active ingredients during the gastrointestinal dissolution of Chinese medicines.


Asunto(s)
Absorción Intestinal , Humanos , Ratas , Animales , Células CACO-2 , Transporte Biológico , Disponibilidad Biológica
13.
Int J Nanomedicine ; 18: 6705-6724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026532

RESUMEN

Purpose: Enhancing the dissolution, permeation and absorption of active components with low solubility and poor permeability is crucial for maximizing therapeutic efficacy and optimizing functionality. The objective of this study is to investigate the potential of natural polysaccharides as carriers to improve the biopharmaceutical properties of active components. Methods: In this study, we employed four representative flavonoids in Astragali Radix, namely Calycosin-7-O-ß-D-glucoside (CAG), Ononin (ON), Calycosin (CA) and Formononetin (FMN), as a demonstration to evaluate the potential of Astragalus polysaccharides (APS) as carriers to improve the biopharmaceutical properties, sush as solubility, permeability, and absorption in vivo. In addition, the microstructure of the flavonoids-APS complexes was characterized, and the interaction mechanism between APS and flavonoids was investigated using multispectral technique and molecular dynamics simulation. Results: The results showed that APS can self-assemble into aggregates with a porous structure and large surface area in aqueous solutions. These aggregates can be loaded with flavonoids through weak intermolecular interactions, such as hydrogen bonding, thereby improving their gastrointestinal stability, solubility, permeability and absorption in vivo. Conclusion: We discovered the self-assembly properties of APS and its potential as carriers. Compared with introducing external excipients, the utilization of natural polysaccharides in plants as carriers may have a unique advantage in enhancing dissolution, permeation and absorption.


Asunto(s)
Planta del Astrágalo , Productos Biológicos , Medicamentos Herbarios Chinos , Flavonoides/química , Planta del Astrágalo/química , Polisacáridos/química , Medicamentos Herbarios Chinos/química
14.
Foods ; 12(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38002111

RESUMEN

Lactic acid bacteria metabolites can be used as a clean-label strategy for meat products due to their "natural" and antibacterial properties. In this study, the feasibility of using cell-free supernatant of Lactiplantibacillus plantarum 90 (LCFS) as a natural antibacterial agent in ground beef was investigated. The sensitivity of LCFS to pH, heat and protease, as well as the changes of enzyme activities of alkaline phosphatase (AKP) and Na+/K+-ATP together with the morphology of indicator bacteria after LCFS treatment, were analyzed to further explore the antibacterial mechanism of LCFS. The results showed that the addition of 0.5% LCFS inhibited the growth of microorganisms in the ground beef gel and extended its shelf-life without affecting the pH, cooking loss, color and texture characteristics of the product. In addition, the antibacterial effect of LCFS was the result of the interaction of organic acids and protein antibacterial substances in destroying cell structures (cell membrane, etc.) to achieve the purpose of bacteriostasis. This study provides a theoretical basis for the application of LCFS in meat products and a new clean-label strategy for the food industry.

16.
Immun Ageing ; 20(1): 44, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649035

RESUMEN

BACKGROUND: Fasting is known to influence the immune functions of leukocytes primarily by regulating their mobilization and redistribution between the bone marrow and the peripheral tissues or circulation, in particular via relocalization of leukocytes back in the bone marrow. However, how the immune system responds to the increased risk of invasion by infectious pathogens with fewer leukocytes in the peripheral blood during fasting intervention remains an open question. RESULTS: We used proteomic, biochemical and flow cytometric tools to evaluate the impact of short-term intensive fasting (STIF), known as beego, on red blood cells by profiling the cells from the STIF subjects before and after 6 days of fasting and 6 days of gradual refeeding. We found that STIF, by triggering the activation of the complement system via the complement receptor on the membrane of red blood cells, boosts fairly sustainable function of red blood cells in immune responses in close relation to various pathogens, including viruses, bacteria and parasites, particularly with the pronounced capacity to defend against SARS-CoV-2, without compromising their oxygen delivery capacity and viability. CONCLUSION: STIF fosters the immune function of red blood cells and therefore, it may be considered as a nonmedical intervention option for the stronger capacity of red blood cells to combat infectious diseases.

17.
Pharmaceutics ; 15(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37514073

RESUMEN

Hepatocellular carcinoma (HCC) is a prevalent and high-mortality cancer worldwide, and its complexity necessitates novel strategies for drug selection and design. Current approaches primarily focus on reducing gene expression, while promoting gene overexpression remains a challenge. In this work, we studied the effect of cytoplasmic polyadenylation element binding protein 2 (CPEB2) in HCC by constructing tissue microarrays (TAMs) from 90 HCC cases and corresponding para-cancerous tissues. Our analysis showed that CPEB2 expression was significantly reduced in HCC tissues, and its low expression was associated with a higher recurrence risk and poorer prognosis in patients with head and neck cancer. CPEB2 was found to regulate HCC epithelial-mesenchymal transition (EMT) and metastasis through the HIF-1α/miR-210-3p/CPEB2 feedback circuit. Using the RNA binding protein immunoprecipitation (RIP) assay, we demonstrated that miR-210 directly governs the expression of CPEB2. The inverse relationship between CPEB2 expression and miR-210-3p in HCC tissues suggested that this regulatory mechanism is directly linked to HCC metastasis, EMT, and clinical outcomes. Moreover, utilizing the SM2miR database, we identified drugs that can decrease miR-210-3p expression, consequently increasing CPEB2 expression and providing new insights for drug development. In conclusion, our findings illustrated a novel HIF-1α/miR-210-3p/CPEB2 regulatory signaling pathway in HCC and highlighted the potential of enhancing CPEB2 expression through targeting miR-210-3p as a novel predictive biomarker and therapeutic strategy in HCC, as it is modulated by the HIF-1α/miR-210-3p/CPEB2 feedback circuit.

18.
J Sci Food Agric ; 103(14): 7127-7135, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37380626

RESUMEN

BACKGROUND: Ovalbumin (OVA), accounting for 50% of proteins in egg white, is a kind of high-quality protein with excellent nutritional and processing functions. Acid heat treatment will induce the deformation and filtration of OVA, endowing it with improved functionality. However, the molecular kinetic process during the fibrillation of OVA and the application of the fabricated OVA fibrils (OVAFs) have not been thoroughly studied and revealed. RESULTS: In this study, the fabrication mechanism and the application OVAFs as an interfacial stabilizer and polyphenol protector were investigated. Acidic (pH 3.0) heat treatment was used to induce the fibrillation of OVA, and thioflavin T fluorescence intensity, molecular weight distribution, and the tertiary and secondary structures of OVAF samples were recorded to determine the fibrillation efficiency and the molecular mechanism. The results showed that, in the initial stage of fibrillation, OVA first hydrolyzed to oligopeptides, accompanied by the exposure of hydrophobic domains. Then, oligopeptides were connected by disulfide bonds to form primary fibril monomers. Hydrophobic interaction and hydrogen bonding may participate in the further polymerization of the fibrils. The fabricated OVAFs were characterized by a ß-sheet-rich structure and possessed improved emulsifying, foaming, and polyphenol protection ability. CONCLUSION: The research work was meaningful for exploring the application of globular water-soluble OVA in an emerging nutritious food with novel texture and sensory properties. © 2023 Society of Chemical Industry.


Asunto(s)
Clara de Huevo , Calor , Ovalbúmina/química , Clara de Huevo/química , Oligopéptidos , Polifenoles
19.
J Hazard Mater ; 457: 131763, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37311294

RESUMEN

Antibiotic resistance is a pressing global health issue, leading to increased illnesses and fatalities. The contribution of viruses to the acquisition, preservation, and dissemination of antibiotic resistance genes (ARGs) is not yet fully understood. By using a high-throughput functional gene-based microarray (GeoChip 5.0), this study examines the prevalence and relative abundance of bacteriophage and eukaryotic viral genes in swine manure, compost, compost-amended agricultural soil, and unamended soil from suburban regions of Beijing, China. Our findings reveal a significantly elevated presence of biomarker viral genes in compost-amended soils compared to unamended soils, suggesting potential health risks associated with compost fertilization. We also observed stronger ecological interactions between ARGs and viral genes in manure and compost than in soils. Network analysis identified arabinose efflux permeases and EmrB/QacA resistance genes, linked to CRISPR encoding sequences, as keystone nodes, indicating possible ARG acquisition via virus infections. Moreover, positive correlations were found between viral genes, antibiotic concentrations, and ARG diversity in manure, compost, and compost-amended soils, highlighting a likely pathway for virus-mediated ARG transfer. In summary, our results indicate that use of compost as a fertilizer in agricultural settings could facilitate the spread of ARGs through viral mechanisms, allowing for time-delayed genetic exchanges over broader temporal and spatial scales than ARGs within bacterial genomes.


Asunto(s)
Antibacterianos , Compostaje , Animales , Porcinos , Antibacterianos/farmacología , Viroma , Genes Bacterianos , Estiércol/microbiología , Suelo , Microbiología del Suelo , Fertilización
20.
Foods ; 12(9)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37174422

RESUMEN

In this study, oleogels were prepared by the emulsion-template method using egg-white protein microgel as a gelator and xanthan gum (XG) as thickener. The physicochemical properties of the emulsion and oleogels were investigated. The adsorption of protein on the surface of the oil droplet reached saturation when the protein microgel concentration reached 2%. The excess protein combined with XG and accumulated on the outer layer of the oleogel, which prevented the emulsion from flocculation, enhanced the oil-holding capacity of the oleogel, and had a positive effect on preventing the oxidation of oil. When the concentration of XG was less than 0.4%, the EWP microgel, combined with the XG, stabilized the emulsion. As the concentration of XG was greater than 0.4%, excessive XG in the emulsion improved the viscosity and mechanical properties of the emulsion to prevent the aggregation of oil droplets. However, the change in XG concentration had no significant effect on the oxidation of the oil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...