Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2310096, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696663

RESUMEN

Combinatorial optimization (CO) has a broad range of applications in various fields, including operations research, computer science, and artificial intelligence. However, many of these problems are classified as nondeterministic polynomial-time (NP)-complete or NP-hard problems, which are known for their computational complexity and cannot be solved in polynomial time on traditional digital computers. To address this challenge, continuous-time Ising machine solvers have been developed, utilizing different physical principles to map CO problems to ground state finding. However, most Ising machine prototypes operate at speeds comparable to digital hardware and rely on binarizing node states, resulting in increased system complexity and further limiting operating speed. To tackle these issues, a novel device-algorithm co-design method is proposed for fast sub-optimal solution finding with low hardware complexity. On the device side, a piezoelectric lithium niobate (LiNbO3) microelectromechanical system (MEMS) oscillator network-based Ising machine without second-harmonic injection locking (SHIL) is devised to solve Max-cut and graph coloring problems. The LiNbO3 oscillator operates at speeds greater than 9 GHz, making it one of the fastest oscillatory Ising machines. System-wise, an innovative grouping method is used that achieves a performance guarantee of 0.878 for Max-cut and 0.658 for graph coloring problems, which is comparable to Ising machines that utilize binarization.

2.
Sci Total Environ ; 915: 170086, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38232825

RESUMEN

Reservoir connectivity provides a solution for regional water shortages. Understanding the water quality of reservoirs and the response of algal communities to water transfer could provide the basis for a long-term evolutionary model of reservoirs. In this study, a water-algal community model was established to study the effects of water transfer on water quality and algal communities in reservoirs. The results showed that water transfer significantly decreased total nitrogen and nitrate concentrations. However, the water transfer resulted in an increase in the CODMn concentration and conductivity in the receiving reservoir. Additionally, the algal density and chlorophyll-a (chl-a) concentration showed an increase with water transfer. Bacillariophyta, Cyanophyta, and Chlorophyta were the dominant algal phyllum in all three reservoirs. Water transfer induced the evolution of the algal community by driving changes in the chemical parameters of the receiving reservoir and led to more complex relationships within the algal community. The effects of stochastic processes on algal communities were also enhanced in the receiving reservoirs. These results provide specific information for water quality safety management and eutrophication prevention in connected reservoirs.


Asunto(s)
Cianobacterias , Diatomeas , Calidad del Agua , Clorofila A , Eutrofización , China , Fósforo/análisis , Nitrógeno/análisis , Monitoreo del Ambiente
3.
Front Oncol ; 13: 993888, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969078

RESUMEN

Background: To determine the reproducibility of measuring the gross total volume (GTV) of primary rectal tumor with manual and semi-automatic delineation on the diffusion-weighted image (DWI), examine the consistency of using the same delineation method on DWI images with different high b-values, and find the optimal delineation method to measure the GTV of rectal cancer. Methods: 41 patients who completed rectal MR examinations in our hospital from January 2020 to June 2020 were prospectively enrolled in this study. The post-operative pathology confirmed the lesions were rectal adenocarcinoma. The patients included 28 males and 13 females, with an average age of (63.3 ± 10.6) years old. Two radiologists used LIFEx software to manually delineate the lesion layer by layer on the DWI images (b=1000 s/mm2 and 1500 s/mm2) and used 10% to 90% of the highest signal intensity as thresholds to semi-automatically delineate the lesion and measure the GTV. After one month, Radiologist 1 performed the same delineation work again to obtain the corresponding GTV. Results: The inter- and intra-observer interclass correlation coefficients (ICC) of measuring GTV using semi-automatic delineation with 30% to 90% as thresholds were all >0.900. There was a positive correlation between manual delineation and semi-automatic delineation with 10% to 50% thresholds (P < 0.05). However, the manual delineation was not correlated with the semi-automatic delineation with 60%, 70%, 80%, and 90% thresholds. On the DWI images with b=1000 s/mm2 and 1500 s/mm2, the 95% limit of agreement (LOA%) of measuring GTV using semi-automatic delineation with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% thresholds were -41.2~67.4, -17.8~51.5, -16.1~49.3, -26.2~50.1, -42.3~57.6, -57.1~65.4, -67.3~66.5, -101.6~91.1, -129.4~136.0, and -15.3~33.0, respectively. The time required for GTV measurement by semi-automatic delineation was significantly shorter than that of manual delineation (12.9 ± 3.6s vs 40.2 ± 13.1s). Conclusions: The semi-automatic delineation of rectal cancer GTV with 30% threshold had high repeatability and consistency, and it was positively correlated with the GTV measured by manual delineation. Therefore, the semi-automatic delineation with 30% threshold could be a simple and feasible method for measuring rectal cancer GTV.

4.
Sci Total Environ ; 864: 161064, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565869

RESUMEN

Biological denitrification was considered an efficient and environmentally friendly way to remove the nitrogen in the water body. However, biological denitrification showed poor nitrogen removal performance due to the lack of electron donors in the low C/N water. In this study, three novel aerobic denitrifying fungi (Trichoderma sp., Penicillium sp., and Fusarium sp.) were isolated and enhanced the performance of aerobic denitrification of fungi in low C/N water bodies combined with polylactic acid/polybutylene adipate-co-terephthalate (PLA/PBAT). In this work, the aerobic denitrifying fungi seed were added to denitrifying liquid medium and mixed with PLA/PBAT. The result showed that Trichoderma sp., Penicillium sp., and Fusarium sp. could reduce 89.93 %, 89.20 %, and 87.76 % nitrate. Meanwhile, the nitrate removal efficiency adding PLA/PBAT exceeded 1.40, 1.68, and 1.46 times that of none. The results of material characterization suggested that aerobic denitrifying fungi have different abilities to secrete proteases or lipases to catalyze ester bonds in PLA/PBAT and utilize it as nutrients in denitrification, especially in Penicillium brasiliensis D6. Besides, the electron transport system activity and the intracellular ATP concentration were increased significantly after adding PLA/PBAT, especially in Penicillium brasiliensis D6. Finally, the highest removal efficiency of total nitrogen in landscape water by fungi combined with PLA/PBAT was >80 %. The findings of this work provide new insight into the possibility of nitrogen removal by fungi in low C/N and the recycling of degradable resources.


Asunto(s)
Nitrógeno , Purificación del Agua , Nitratos , Desnitrificación , Electrones , Poliésteres , Purificación del Agua/métodos , Hongos , Aerobiosis
5.
Sci Total Environ ; 859(Pt 2): 160236, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36427714

RESUMEN

The aerobic denitrifying capacity of actinomycete strain has been investigated recently, while little is known about nitrogen and carbon substrate removal by mix-cultured aerobic denitrifying actinobacteria (Mix-CADA) community. Hence, three Mix-CADA consortiums, named Y23, X21, and Y27, were isolated from urban lakes to investigate their aerobic denitrification capacity, and their removal efficiency for nitrate and dissolved organic carbon were >97 % and 90 %, respectively. Illumina Miseq sequencing revealed that Streptomyces was the most dominant genus in the Mix-CADA consortium. Network analysis indicated that Streptomyces exfoliates, as the core species in the Mix-CADA consortium, majorly contributed to dissolved organic carbon and total nitrogen reduction. Moreover, the three Mix-CADA consortiums could remove 78 % of the total nitrogen and 61 % of the permanganate index from the micro-polluted l water. Meanwhile, humic-like was significantly utilized by three Mix-CADA consortiums, whereas Mix-CADA Y27 could also utilize aromatic protein and soluble microbial by-product-like in the micro-polluted raw water purification. In summary, this study will offer a novel perspective for the purification of micro-polluted raw water using the Mix-CADA consortium.


Asunto(s)
Desnitrificación , Materia Orgánica Disuelta , Aerobiosis , Nitrógeno , Nitratos , Agua
6.
Sci Total Environ ; 857(Pt 1): 159160, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36195142

RESUMEN

Although associations between phytoplankton and micro-eukaryotes have been studied in aquatic ecosystems, there are still knowledge gaps in comprehending their dynamics and interactions in drinking water reservoirs. Here, the seasonal dynamics of phytoplankton and micro-eukaryotic diversities and their co-existence patterns were studied in a drinking water reservoir, Northwest China. The highest phytoplankton diversity was observed in summer, and Chlorella sp. that belongs to Chlorophyta was the most abundant genus. The highest eukaryotic diversity was also detected in summer, and Rimostrombidium sp. that belongs to Ciliophora was the most dominant genus. Mantel test showed that the phytoplankton diversity was significantly correlated with ammonia nitrogen (r = 0.561, p = 0.001) and dissolved organic carbon (r = 0.267, p = 0.017), while the eukaryotic diversity was significantly associated with ammonia nitrogen (r = 0.265, p = 0.034) and temperature (r = 0.208, p = 0.046). PLS-PM (Partial Least Squares Path Modeling) further revealed that nutrients (P < 0.01) significantly affected the phytoplankton diversity, while nutrients (P < 0.01) and temperature (P < 0.01) significantly influenced the eukaryotic diversity. Co-occurrence network displayed the primarily positive interactions (77.66% positive and 22.34% negative) between phytoplankton and micro-eukaryotes. These findings could deepen our understanding of interactions between phytoplankton and micro-eukaryotes and their driving factors under changing aquatic environments of drinking water reservoirs.


Asunto(s)
Chlorella , Agua Potable , Fitoplancton , Eucariontes , Ecosistema , Estaciones del Año , Amoníaco , Nitrógeno/análisis , ADN
7.
Water Res ; 225: 119161, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36191525

RESUMEN

Eutrophication and algal blooms have become global issues. The drinking water treatment process suffers from pollution by algal organic matter (AOM) through cell lysis during the algal blooms. Nevertheless, it remains unclear how AOM invasion affects water quality and microbial communities in drinking water, particularly in the stagnant settings. In this study, the addition of AOM caused the residual chlorine to rapidly degrade and below the limit of 0.05 mg/L, while the NO2--N concentration ranged from 0.11 to 3.71 mg/L. Additionally, total bacterial counts increased and subsequently decreased. The results of Biolog demonstrated that the AOM significantly improved the utilization capacity of carbon sources and changed the preference for carbon sources. Full-length 16S rRNA gene sequencing and network modeling revealed a considerable reduction in the abundance of Proteobacteria, whereas that of Bacteroidetes increased significantly under the influence of AOM. Furthermore, the species abundance distributions of the Microcystis group and Scenedesmus group was most consistent with the Mandelbrot model. According to redundancy analysis and structural equation modeling, the bacterial community structure of the control group was most positively regulated by the free residual chlorine concentrations, whereas the Microcystis group and Scenedesmus group were positively correlated with the total organic carbon (TOC) concentration. Overall, these findings provide a scientific foundation for the evolution of drinking water quality under algae bloom pollution.


Asunto(s)
Agua Potable , Microcystis , Scenedesmus , Cloro/química , Agua Potable/metabolismo , Hidrodinámica , ARN Ribosómico 16S/metabolismo , Dióxido de Nitrógeno/metabolismo , Microcystis/metabolismo , Carbono/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-35436192

RESUMEN

This work studies the influence of substrate loss on the performance of acoustic resonators and on-chip inductors and investigates the effective substrate resistivity of seven commonly used substrates in silicon-based devices. The substrates include X-cut lithium niobate (LiNbO3) film with two different thicknesses (400 nm and 1.6 [Formula: see text]) on high-resistivity Si (HR-Si) and amorphous Si wafers, SiO2 film with two different thicknesses on HR-Si, and bare HR-Si. The effective resistivities of these substrates are extracted using coplanar waveguides (CPWs) over a frequency range from 1 to 40 GHz. Using the effective resistivity approach, the efficiency of two substrate loss reduction techniques-Si wafer removal and amorphous Si-in reducing substrate loss is quantified. Comparison of the extracted substrate resistivities of the suspended and un-suspended dielectric-on-Si structures and comparison of LiNbO3 on HR-Si and amorphous Si are carried out. Substrate loss reduction techniques are more advantageous for a thinner dielectric film and at a lower frequency range due to the higher filling factor of the electric field in the Si wafer. Finally, by comparison of the effective substrate resistivity of SiO2 film on an HR-Si with bare HR-Si, thick plasma-enhanced chemical vapor deposition (PECVD) SiO2 film is found to be a good insulation layer to reduce substrate loss.


Asunto(s)
Sistemas Microelectromecánicos , Dióxido de Silicio , Acústica , Dióxido de Silicio/química
9.
Nucl Med Commun ; 43(1): 114-121, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34406147

RESUMEN

OBJECTIVES: We explored the relationship between lymph node metastasis (LNM) and total lesion glycolysis (TLG) of primary lesions determined by 18fluoro-2-deoxyglucose PET/computed tomography (18F-FDG PET/CT) in patients with gastric adenocarcinoma, and evaluated the independent effect of this association. METHODS: This retrospective study included 106 gastric adenocarcinoma patients who were examined by preoperative 18F-FDG PET/CT imaging between April 2016 and April 2020. We measured TLG of primary gastric lesions and evaluated its association with LNM. Multivariate logistic regression and a two-piece-wise linear regression were performed to evaluate the relationship between TLG of primary lesions and LNM. RESULTS: Of the 106 patients, 75 cases (71%) had LNM and 31 cases (29%) did not have LNM. Univariate analyses revealed that a per-SD increase in TLG was independently associated with LNM [odds ratio (OR) = 2.37; 95% confidence interval (CI), 1.42-3.98; P = 0.0010]. After full adjustment of confounding factors, multivariate analyses exhibited that TLG of primary lesions was still significantly associated with LNM (OR per-SD: 2.20; 95% CI, 1.16-4.19; P = 0.0164). Generalized additive model indicated a nonlinear relationship and saturation effect between TLG of primary lesions and LNM. When TLG of primary lesions was <23.2, TLG was significantly correlated with LNM (OR = 1.26; 95% CI, 1.07-1.48; P = 0.0053), whereas when TLG of primary lesions was ≥ 23.2, the probability of LNM was greater than 60%, gradually reached saturation effect, as high as 80% or more. CONCLUSIONS: In this preliminary study, there were saturation and segmentation effects between TLG of primary lesions determined by preoperative 18F-FDG PET/CT and LNM. When TLG of primary lesions was ≥ 23.2, the probability of LNM was greater than 60%, gradually reached saturation effect, as high as 80% or more. TLG of primary lesions is helpful in the preoperative diagnosis of LNM in patients with gastric adenocarcinoma.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones
10.
Nucl Med Commun ; 42(12): 1328-1335, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34284441

RESUMEN

BACKGROUND: Sublobar resection is suitable for peripheral cT1N0M0 non-small-cell lung cancer (NSCLC). The traditional PET-CT criterion (lymph node size ≥1.0 cm or SUVmax ≥2.5) for predicting lymph nodes metastasis (LNM) has unsatisfactory performance. OBJECTIVE: We explore the clinical role of preoperative SUVmax and the size of the primary lesions for predicting peripheral cT1 NSCLC LNM. METHODS: We retrospectively analyzed 174 peripheral cT1 NSCLC patients underwent preoperative 18F-FDG PET-CT and divided into the LNM and non-LNM group by pathology. We compared the differences of primary lesions' baseline characteristics between the two groups. The risk factors of LNM were determined by univariate and multivariate analysis, and we assessed the diagnostic efficacy with the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value and negative predictive value (NPV). RESULTS: Of the enrolled cases, the incidence of LNM was 24.7%. The preoperative SUVmax >6.3 or size >2.3 cm of the primary lesions were independent risk factors of peripheral cT1 NSCLC LNM (ORs, 95% CIs were 6.18 (2.40-15.92) and 3.03 (1.35-6.81). The sensitivity, NPV of SUVmax >6.3 or size >2.3 cm of the primary lesions were higher than the traditional PET-CT criterion for predicting LNM (100.0 vs. 86.0%, 100.0 vs. 89.7%). A Hosmer-Lemeshow test showed a goodness-of-fit (P = 0.479). CONCLUSIONS: The excellent sensitivity and NPV of preoperative of the SUVmax >6.3 or size >2.3 cm of the primary lesions based on 18F-FDG PET-CT might identify the patients at low-risk LNM in peripheral cT1 NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas
11.
Cancer Imaging ; 21(1): 40, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039436

RESUMEN

BACKGROUND: To establish and validate a high-resolution magnetic resonance imaging (HRMRI)-based radiomic nomogram for prediction of preoperative perineural invasion (PNI) of rectal cancer (RC). METHODS: Our retrospective study included 140 subjects with RC (99 in the training cohort and 41 in the validation cohort) who underwent a preoperative HRMRI scan between December 2016 and December 2019. All subjects underwent radical surgery, and then PNI status was evaluated by a qualified pathologist. A total of 396 radiomic features were extracted from oblique axial T2 weighted images, and optimal features were selected to construct a radiomic signature. A combined nomogram was established by incorporating the radiomic signature, HRMRI findings, and clinical risk factors selected by using multivariable logistic regression. RESULTS: The predictive nomogram of PNI included a radiomic signature, and MRI-reported tumor stage (mT-stage). Clinical risk factors failed to increase the predictive value. Favorable discrimination was achieved between PNI-positive and PNI-negative groups using the radiomic nomogram. The area under the curve (AUC) was 0.81 (95% confidence interval [CI], 0.71-0.91) in the training cohort and 0.75 (95% CI, 0.58-0.92) in the validation cohort. Moreover, our result highlighted that the radiomic nomogram was clinically beneficial, as evidenced by a decision curve analysis. CONCLUSIONS: HRMRI-based radiomic nomogram could be helpful in the prediction of preoperative PNI in RC patients.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias de la Vaina del Nervio/etiología , Radiometría/métodos , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/radioterapia , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Neoplasias de la Vaina del Nervio/patología , Nomogramas , Estudios Retrospectivos
12.
Artículo en Inglés | MEDLINE | ID: mdl-33395392

RESUMEN

This article presents an 8.6-GHz oscillator utilizing the third-order antisymmetric overtone ( A3 ) in a lithium niobate (LiNbO3) radio frequency microelectromechanical systems (RF-MEMS) resonator. The oscillator consists of an acoustic resonator in a closed loop with cascaded RF tuned amplifiers (TAs) built on Taiwan Semiconductor Manufacturing Company (TSMC) RF general purpose (GP) 65-nm complementary metal-oxide semiconductor (CMOS). The TAs bandpass response, set by on-chip inductors, satisfies Barkhausen's oscillation conditions for A3 while suppressing the fundamental and higher order resonances. Two circuit variations are implemented. The first is an 8.6-GHz standalone oscillator with a source-follower buffer for direct 50- Ω -based measurements. The second is an oscillator-divider chain using an on-chip three-stage divide-by-two frequency divider for a ~1.1-GHz output. The standalone oscillator achieves a measured phase noise of -56, -113, and -135 dBc/Hz at 1 kHz, 100 kHz, and 1 MHz offsets from an 8.6-GHz output while consuming 10.2 mW of dc power. The oscillator also attains a figure-of-merit of 201.6 dB at 100-kHz offset, surpassing the state-of-the-art (SoA) oscillators-based electromagnetic (EM) and RF-MEMS. The oscillator-divider chain produces a phase noise of -69.4 and -147 dBc/Hz at 1 kHz and 1 MHz offsets from a 1075-MHz output while consuming 12 mW of dc power. Its phase noise performance also surpasses the SoA L -band phase-locked loops (PLLs). With further optimization, this work can enable low-power multistandard wireless transceivers featuring high speed, high sensitivity, and high selectivity in small-form factors.

13.
Artículo en Inglés | MEDLINE | ID: mdl-33395393

RESUMEN

This work presents an improved design that exploits dispersion matching to suppress the spurious modes in the lithium niobate first-order antisymmetric (A1) Lamb wave mode resonators. The dispersion matching in this work is achieved by micro-machining the lithium niobate thin film to balance the electrical and mechanical loadings of electrodes. In this article, the dispersion matchings of the A1 mode in lithium niobate based on different metals are analytically modeled and validated with finite-element analysis. The fabricated devices exhibit spurious-free responses with a quality factor of 692 and an electromechanical coupling coefficient of 28%. The demonstrated method herein could overcome a significant hurdle that is currently impeding the commercialization of A1 devices.

14.
Abdom Radiol (NY) ; 46(3): 873-884, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32940755

RESUMEN

PURPOSE: To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients. METHODS: A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature. RESULTS: The predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83-0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74-0.93; Delong test, p = 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67-0.86; Delong test, p = 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76-0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71-0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69-0.92; Delong test, p = 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort. CONCLUSION: HRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients.


Asunto(s)
Extensión Extranodal , Neoplasias del Recto , Humanos , Metástasis Linfática/diagnóstico por imagen , Imagen por Resonancia Magnética , Neoplasias del Recto/diagnóstico por imagen , Estudios Retrospectivos
15.
Artículo en Inglés | MEDLINE | ID: mdl-33125326

RESUMEN

This article presents the design approach and the first demonstration of a wideband hybrid monolithic acoustic filter in the K -band, which exceeds the limitation of electromechanical coupling on the fractional bandwidth (FBW) of acoustic filters. The hybrid filter utilizes the codesign of electromagnetic (EM) and acoustic to attain wide bandwidth while keeping the advantages of small sizes and high Q in the acoustic domain. The performance trade space and design flow of the hybrid filter are also presented in this article, which allows this technology to be applied for filters with different center frequencies and FBWs. The hybrid filter is simulated by hybridizing the EM and acoustic finite element analysis, which are carried out separately and combined at a system level. The fabricated filter built with resonators having an electromechanical coupling of 0.7% based on the seventh-order antisymmetric Lamb wave mode (A7) has a 3-dB FBW of 2.4% at 19 GHz and a compact footprint of 1.4 mm2.

16.
Opt Express ; 28(20): 29644-29661, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33114859

RESUMEN

The large electro-optic coefficient, r33, of thin-film lithium niobate (LN) on insulator makes it an excellent material platform for high-efficiency optical modulators. Using the fundamental transverse magnetic optical mode in Z-cut LN enables isotropic in-plane devices; however, realizing a strong vertical electric field to capitalize on r33 has been challenging. Here we present a symmetric electrode configuration to boost the vertical field strength inside a fully-etched single-mode LN waveguide. We use this design paradigm to demonstrate an ultra-compact fully isotropic microring modulator with a high electro-optic tuning efficiency of 9 pm/V, extinction ratio of 20 dB, and modulation bandwidth beyond 28 GHz. Under quasi-static operation, the tuning efficiency of the modulator reaches 20 pm/V. Fast, efficient, high-contrast modulation will be critical in future optical communication systems while large quasi-static efficiency will enable post-fabrication trimming, thermal compensation, and even complete reconfiguration of microring-based sensor arrays and photonic integrated circuits.

17.
IEEE Trans Ultrason Ferroelectr Freq Control ; 67(12): 2731-2737, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32746220

RESUMEN

In this work, we present gigahertz low-loss unidirectional acoustic focusing transducers in thin-film lithium niobate. The design follows the anisotropy of fundamental symmetric (S0) waves in X-cut lithium niobate. The implemented acoustic delay line testbed consisting of a pair of the proposed transducers shows a low insertion loss of 4.2 dB and a wide fractional bandwidth of 7.5% at 1 GHz. The extracted transducer loss is 1.46 dB, and the propagation loss of the S0 waves is 0.0126 dB/ [Formula: see text]. The design framework is readily extendable to other acoustic modes, given consideration on the optimal orientation for power flow and electromechanical transduction.

18.
Cancer Cell Int ; 20: 316, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32694938

RESUMEN

BACKGROUND: Cell cycle dysregulation plays a key role in the pathogenesis of malignant tumors. As a part of the CDK-activating kinase (CAK) trimeric complex, cyclin H is necessary to regulate the cell cycle and proliferation. This investigation aims to characterize the clinical significance and the biological functions of cyclin H in ovarian cancer. METHODS: Immunohistochemical staining was performed on 60 ovarian cancer cases, and a correlation between cyclin H expression and the clinical characteristics of ovarian cancer was analyzed. The function of cyclin H in ovarian cancer was further explored using HO8910 cells and a subcutaneous xenograft model of nude mice. RESULT: Cyclin H was slightly expressed in grade 1 ovarian cancer but highly expressed in grade 2 and grade 3 cancerous tissues. The Spearman's rank correlation analysis showed that the expression of cyclin H is positively correlated with the tumor grade, the FIGO stage, histological grade, and the peritoneal metastasis of ovarian cancer and is also positively correlated with the Ki67 and p-CDK2 in ovarian cancer. Additionally, we found that the five-year survival rate was higher in patients expressing low cyclin H than those expressing high cyclin H. Further, knockdown of cyclin H was achieved using an shRNA in HO8910 ovarian cancer cell line. Silencing cyclin H resulted in a G1/S cell cycle arrest in ovarian cancer cells suppressing its growth. The Ki67 expression was also decreased in cyclin H silenced ovarian cancer. CONCLUSION: These results suggest that high expression of cyclin H predicts the poor prognosis and promotes the growth of ovarian cancer by regulating the cell cycle.

19.
Artículo en Inglés | MEDLINE | ID: mdl-32012008

RESUMEN

We present the first group of GHz low-loss acoustic radio frequency (RF) couplers using the fundamental symmetric (S0) mode in X-cut lithium niobate thin films. The demonstrated multistrip couplers (MSCs) significantly surpass the insertion loss (IL) and the operating frequency of the previous works in more compact structures, thanks to the large electromechanical coupling and low loss of S0 in lithium niobate. The design space of S0 MSCs is first explored. Devices with different coupling factors are fabricated using different numbers of strips. Based on the S0 testbed with an IL of 4.5 dB at 1 GHz, the hybrid coupler shows an IL of 7.5 dB, while the track changer shows an IL of 5.1 dB, over a 3-dB fractional bandwidth of 8%. Couplers at different frequencies (between 0.75 and 1.55 GHz) are also investigated. Upon further optimizations, the S0 MSC platform can potentially enable low-loss wideband signal processing functions toward an RF acoustic component kit.

20.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383685

RESUMEN

This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 °C in air. After a high-temperature burn-in treatment, device quality factor (Q) was enhanced to 508 and the resonance shifted to a lower frequency and remained stable up to 500 °C. During subsequent in situ high-temperature testing, the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz and 87.21 MHz at 25 °C and 84.56 MHz and 84.39 MHz at 500 °C, correspondingly, representing a -3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first- and second-order temperature coefficient of frequency (TCF) were found to be -95.27 ppm/°C and 57.5 ppb/°C2 for resonant mode A, and -95.43 ppm/°C and 55.8 ppb/°C2 for resonant mode B, respectively. The temperature-dependent quality factor and electromechanical coupling coefficient (kt2) were extracted and are reported. Device Q decreased to 334 and total kt2 increased to 12.40% after high-temperature exposure. This work supports the use of piezoelectric LN as a material platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared) incorporated with high coupling acoustic readout.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...