Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(14): 4158-4164, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557108

RESUMEN

As a quasi-layered ferrimagnetic material, Mn3Si2Te6 nanoflakes exhibit magnetoresistance behavior that is fundamentally different from their bulk crystal counterparts. They offer three key properties crucial for spintronics. First, at least 106 times faster response compared to that exhibited by bulk crystals has been observed in current-controlled resistance and magnetoresistance. Second, ultralow current density is required for resistance modulation (∼5 A/cm2). Third, electrically gate-tunable magnetoresistance has been realized. Theoretical calculations reveal that the unique magnetoresistance behavior in the Mn3Si2Te6 nanoflakes arises from a magnetic field induced band gap shift across the Fermi level. The rapid current induced resistance variation is attributed to spin-orbit torque, an intrinsically ultrafast process (∼nanoseconds). This study suggests promising avenues for spintronic applications. In addition, it highlights Mn3Si2Te6 nanoflakes as a suitable platform for investigating the intriguing physics underlying chiral orbital moments, magnetic field induced band variation, and spin torque.

2.
Sci Rep ; 14(1): 1064, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212380

RESUMEN

This paper proposes a fluid classifier for a tight reservoir using a quantum neural network (QNN). It is difficult to identify the fluid in tight reservoirs, and the manual interpretation of logging data, which is an important means to identify the fluid properties, has the disadvantages of a low recognition rate and non-intelligence, and an intelligent algorithm can better identify the fluid. For tight reservoirs, the logging response characteristics of different fluid properties and the sensitivity and relevance of well log parameter and rock physics parameters to fluid identification are analyzed, and different sets of input parameters for fluid identification are constructed. On the basis of quantum neural networks, a new method for combining sample quantum state descriptions, sensitivity analysis of input parameters, and wavelet activation functions for optimization is proposed. The results of identifying the dry layer, gas layer, and gas-water co-layer in the tight reservoir in the Sichuan Basin of China show that different input parameters and activation functions affect recognition performance. The proposed quantum neural network based on hybrid parameters and a wavelet activation function has higher fluid identification accuracy than the original quantum neural network model, indicating that this method is effective and warrants promotion and application.

3.
Phys Rev Lett ; 131(16): 166703, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37925723

RESUMEN

Finding tunable van der Waals (vdW) ferromagnets that operate at above room temperature is an important research focus in physics and materials science. Most vdW magnets are only intrinsically magnetic far below room temperature and magnetism with square-shaped hysteresis at room temperature has yet to be observed. Here, we report magnetism in a quasi-2D magnet Cr_{1.2}Te_{2} observed at room temperature (290 K). This magnetism was tuned via a protonic gate with an electron doping concentration up to 3.8×10^{21} cm^{-3}. We observed nonmonotonic evolutions in both coercivity and anomalous Hall resistivity. Under increased electron doping, the coercivities and anomalous Hall effects (AHEs) vanished, indicating a doping-induced magnetic phase transition. This occurred up to room temperature. DFT calculations showed the formation of an antiferromagnetic (AFM) phase caused by the intercalation of protons which induced significant electron doping in the Cr_{1.2}Te_{2}. The tunability of the magnetic properties and phase in room temperature magnetic vdW Cr_{1.2}Te_{2} is a significant step towards practical spintronic devices.

4.
PeerJ ; 11: e15349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223121

RESUMEN

Anthocyanins are a group of natural pigments acting as stress protectants induced by biotic/abiotic stress in plants. Although the metabolic pathway of anthocyanin has been studied in potato, the roles of miRNAs on the metabolic pathway remain unclear. In this study, a purple tetraploid potato of SD92 and its red mutant of SD140 were selected to explore the regulation mechanism of miRNA in anthocyanin biosynthesis. A comparative analysis of small RNAs between SD92 and SD140 revealed that there were 179 differentially expressed miRNAs, including 65 up- and 114 down-regulated miRNAs. Furthermore, 31 differentially expressed miRNAs were predicted to potentially regulate 305 target genes. KEGG pathway enrichment analysis for these target genes showed that plant hormone signal transduction pathway and plant-pathogen interaction pathway were significantly enriched. The correlation analysis of miRNA sequencing data and transcriptome data showed that there were 140 negative regulatory miRNA-mRNA pairs. The miRNAs included miR171 family, miR172 family, miR530b_4 and novel_mir170. The mRNAs encoded transcription factors, hormone response factors and protein kinases. All these results indicated that miRNAs might regulate anthocyanin biosynthesis through transcription factors, hormone response factors and protein kinase.


Asunto(s)
MicroARNs , Solanum tuberosum , Antocianinas/genética , Solanum tuberosum/genética , MicroARNs/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN
5.
J Investig Med ; 71(5): 511-525, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36859802

RESUMEN

Owing to the high rates of relapse and migration, ovarian cancer (OC) has been recognized as the most lethal gynecological malignancy worldwide. The activity of the epidermal growth factor receptor (EGFR) signaling pathway is frequently associated with OC cell proliferation and migration. Despite this knowledge, inhibition of EGFR signaling in OC patients failed to achieve satisfactory therapeutic effects. In this study, we identified that bruceine D (BD) and EGFR inhibitor, afatinib, combination resulted in synergistic anti-OC effects. The results indicated that compared with one of both drugs alone, the combination of BD and afatinib slowed the DNA replication rate, inhibition of cell viability, and proliferation and clone formation. This resulted in cell cycle arrest and cell apoptosis. In addition, the combination of BD and afatinib possessed a stronger ability to inhibit the OC cell adhesion and migration than treatment with BD or afatinib alone. Mechanistically, the combined treatment triggered intense DNA damage, suppressed DNA damage repair, and enhanced the inhibition of the EGFR pathway. These results demonstrated that compared with each pathway inhibition, combined blocking of both DNA damage repair and the EGFR pathway appears to more effective against OC treatment. The results support the potential of BD and afatinib combination as a therapeutic strategy for OC patients.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Ováricas , Humanos , Femenino , Afatinib/farmacología , Afatinib/uso terapéutico , Receptores ErbB/genética , Recurrencia Local de Neoplasia , Proliferación Celular , Neoplasias Ováricas/tratamiento farmacológico , Daño del ADN , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico
6.
ACS Nano ; 17(7): 6534-6544, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36952315

RESUMEN

Photodetectors have been applied to pivotal optoelectronic components of modern optical communication, sensing, and imaging systems. As a room-temperature ferroelectric van der Waals semiconductor, 2D α-In2Se3 is a promising candidate for a next-generation optoelectronic material because of its thickness-dependent direct bandgap and excellent optoelectronic performance. Previous studies of photodetectors based on α-In2Se3 have been rarely focused on the modulated relationship between the α-In2Se3 intrinsic ferroelectricity and photoresponsivity. Herein, a simple integrated process and high-performance photodetector based on an α-In2Se3/Si vertical hybrid-dimensional heterojunction was constructed. Our photodetector in the ferroelectric polarization up state accomplishes a self-powered, highly sensitive photoresponse with an on/off ratio of 4.5 × 105 and detectivity of 1.6 × 1013 Jones, and it also shows a fast response time with 43 µs. The depolarization field generated by the remanent polarization of ferroelectrics in α-In2Se3 provides a strategy for enhancement and modulation of photodetection. The negative correlation was discovered because the enhancement photoresponsivity factor of ferroelectric modulation competes with the photovoltaic behavior within the α-In2Se3/Si heterojunction. Our research highlights the great potential of the high-efficiency heterojunction photodetector for future object recognition and photoelectric imaging.

7.
J Immunol Res ; 2022: 2148215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935576

RESUMEN

Methods: Datasets containing RNA sequencing and corresponding clinical data of cervical cancer patients were obtained from searching publicly accessible databases. The "NMF" R package was conducted to calculate the matrix of the screened prognosis gene expression. Ferroptosis-related differential genes in cervical cancer were detected using the "limma" R function and WGCNA. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression analysis were conducted to develop a novel prognostic signature. The prediction model was verified by the nomogram integrating clinical characteristics; the GSE44001 dataset was used as an external verification. Then, the immune status and tumor mutation load were explored. Finally, immunohistochemistry as well as quantitative polymerase chain reaction (RT-qPCR) was utilized to ascertain the expression of FRGs. Results: Two molecular subgroups (cluster 1 and cluster 2) with different FRG expression patterns were recognized. A ferroptosis-related model based on 4 genes (VEGFA, CA9, DERL3, and RNF130) was developed through TCGA database to identify the unfavorable prognosis cases. Patients in cluster 1 showed significantly decreased overall survival in contrast with those in cluster 2 (P < 0.05). The LASSO technique and Cox regression analysis were both utilized to establish the independence of the prognostic model. The validity of nomogram prognostic predictions has been well demonstrated for 3- and 5-year survival in both internal and external data validation cohorts. These two subgroups showed striking differences in tumor-infiltrating leukocytes and tumor mutation burden. The low-risk subgroup showed a longer overall survival time with a higher immune cell score and higher tumor mutation rate. Gene functional enrichment analyses revealed predominant enrichment in various tumor-associated signaling pathways. Finally, the expression of each gene was confirmed by immunohistochemistry and RT-qPCR. Conclusion: A novel and comprehensive ferroptosis-related gene model was proposed for cervical cancer which was capable of distinguishing the patients independently with high risk for poor survival, and targeting ferroptosis may represent a promising approach for the treatment of CC.


Asunto(s)
Ferroptosis , Neoplasias del Cuello Uterino , Femenino , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Nomogramas , Pronóstico , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/genética
8.
Phys Eng Sci Med ; 45(3): 971-980, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35763194

RESUMEN

An approach to autogenerate voxel-based absorbed dose for nuclear medicine is proposed using generative adversarial networks. The method is based on image-to-image transformation and promises to achieve real-time visualization of the absorbed dose and optimization of therapeutic strategies. The activity-density superimposed image is input to generator (G) as a reference image to generate a pseudoabsorbed dose image (DI), which is then mixed with ground truth (GT) DI and recognized by discriminator (D). If the pseudoimage is recognized, the information is fed back, and G regenerates a pseudodose image until D drops to obtain a lifelike DI. As a feasibility study, we used the dose distribution of segmented human anatomy from different sources and activities as training and test datasets. The activity source was assumed to be 1, 2, 3, 4, or 7 subsource blocks. The 3-subsource model was used as the test dataset, and the others were used as the training dataset. The activity distribution in the subsource was assumed to be uniform or heterogeneous (i.e., Gaussian diffusion with sigma 0.0, 0.3, or 0.6). Differences were assessed by Gamma analysis. Results showed that the same or quasi-inhomogeneity model can well predict the dose distribution of different activity-inhomogeneity. Although the 1-source model was trained with very few datasets, it showed an optimal balance between accuracy and training efficiency. There were offsets in the mean absorbed dose between the predicted and GT, but they all showed a higher Gamma-pass-rate (> 93%) and ~ 10% std.


Asunto(s)
Medicina Nuclear , Radiactividad , Estudios de Factibilidad , Humanos , Cintigrafía
9.
Proc Natl Acad Sci U S A ; 119(17): e2120557119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35439052

RESUMEN

The sun (∼6,000 K) and outer space (∼3 K) are two significant renewable thermodynamic resources for human beings on Earth. The solar thermal conversion by photothermal (PT) and harvesting the coldness of outer space by radiative cooling (RC) have already attracted tremendous interest. However, most of the PT and RC approaches are static and monofunctional, which can only provide heating or cooling respectively under sunlight or darkness. Herein, a spectrally self-adaptive absorber/emitter (SSA/E) with strong solar absorption and switchable emissivity within the atmospheric window (i.e., 8 to 13 µm) was developed for the dynamic combination of PT and RC, corresponding to continuously efficient energy harvesting from the sun and rejecting energy to the universe. The as-fabricated SSA/E not only can be heated to ∼170 °C above ambient temperature under sunshine but also be cooled to 20 °C below ambient temperature, and thermal modeling captures the high energy harvesting efficiency of the SSA/E, enabling new technological capabilities.

10.
Sensors (Basel) ; 22(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458913

RESUMEN

Accurate fire identification can help to control fires. Traditional fire detection methods are mainly based on temperature or smoke detectors. These detectors are susceptible to damage or interference from the outside environment. Meanwhile, most of the current deep learning methods are less discriminative with respect to dynamic fire and have lower detection precision when a fire changes. Therefore, we propose a dynamic convolution YOLOv5 fire detection method using a video sequence. Our method first uses the K-mean++ algorithm to optimize anchor box clustering; this significantly reduces the rate of classification error. Then, the dynamic convolution is introduced into the convolution layer of YOLOv5. Finally, pruning of the network heads of YOLOv5's neck and head is carried out to improve the detection speed. Experimental results verify that the proposed dynamic convolution YOLOv5 fire detection method demonstrates better performance than the YOLOv5 method in recall, precision and F1-score. In particular, compared with three other deep learning methods, the precision of the proposed algorithm is improved by 13.7%, 10.8% and 6.1%, respectively, while the F1-score is improved by 15.8%, 12% and 3.8%, respectively. The method described in this paper is applicable not only to short-range indoor fire identification but also to long-range outdoor fire detection.


Asunto(s)
Incendios , Robótica , Algoritmos , Redes Neurales de la Computación , Humo
11.
Artículo en Inglés | MEDLINE | ID: mdl-35206280

RESUMEN

Improving energy efficiency is an important way to achieve low-carbon economic development, a common goal of most nations. Based on the comprehensive survey data of enterprises above a designated size in Guangdong Province, this paper studies the impact of artificial intelligence on the energy efficiency of manufacturing enterprises. The results show that: (1) artificial intelligence, as measured by the use of industrial robots, has significantly improved the energy efficiency of manufacturing enterprises. This conclusion is still robust after introducing data on industrial robots in the United States over the same time period as the instrumental variable for the endogeneity test. (2) The mechanism test shows that artificial intelligence mainly promotes the improvement in energy efficiency by promoting technological progress; the impact of artificial intelligence on the technological efficiency of enterprises is not significant. (3) Heterogeneity analysis shows that the age of the manufacturing enterprises inhibits a promoting effect of artificial intelligence on energy efficiency; manufacturing enterprises' performance can enhance the promoting effect of artificial intelligence on energy efficiency, but this promoting effect can only be shown when the enterprise performance is positive. The paper clarifies both the impact of artificial intelligence on the energy efficiency of manufacturing enterprises and its mechanism of action; this will help provide a reference for future decision-making designed to improve manufacturing enterprises' energy efficiency.


Asunto(s)
Inteligencia Artificial , Conservación de los Recursos Energéticos , China , Comercio , Desarrollo Económico , Eficiencia
12.
BMJ Open ; 12(2): e047622, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35190406

RESUMEN

INTRODUCTION: Acute kidney injury (AKI) is a common and severe clinical problem that is associated with high mortality, a long hospital stays and high healthcare resource consumption. Approximately a quarter of AKI survivors will develop chronic kidney disease. Mesenchymal stem cells (MSCs) are multipotent stem cells with antiapoptotic, immunomodulatory, antioxidative and proangiogenic properties. Therefore, MSCs have been considered as a potential new therapy for the treatment of AKI. Several clinical trials have been performed, but the results have been inconsistent. This trial investigated whether MSCs can improve renal recovery and mortality in patients with severe AKI. METHODS AND ANALYSIS: One hundred subjects suffering from severe AKI will participate in this patient-blinded, randomised, placebo-controlled, parallel design clinical trial. Participants will be randomly assigned to receive two doses of MSCs or placebo (saline) on days 0 and 7. Urinary biomarkers of renal injury and repair will be measured using commercially available ELISA kits. The main outcome measures are changes in renal function levels within the first 28 days following MSC infusion. ETHICS AND DISSEMINATION: The study was approved by the Ethics Committee of the Chinese PLA General Hospital. The findings of the study will be disseminated through public and scientific channels. TRIAL REGISTRATION NUMBER: NCT04194671.


Asunto(s)
Lesión Renal Aguda , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Lesión Renal Aguda/terapia , Humanos , Riñón , Trasplante de Células Madre Mesenquimatosas/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Cordón Umbilical
13.
iScience ; 24(7): 102734, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34258562

RESUMEN

Electric-field (E-field) control of magnetic switching provides an energy-efficient means to toggle the magnetic states in spintronic devices. The angular tunneling magnetoresistance (TMR) of an magnetic tunnel junction (MTJ)/PMN-PT magnetoelectronic hybrid indicates that the angle-dependent switching fields of the free layer can decrease significantly subject to the application of an E-field. In particular, the switching field along the major axis is reduced by 59% from 28.0 to 11.5 Oe as the E-field increases from 0 to 6 kV/cm, while the TMR ratio remains intact. The switching boundary angle decreases (increases) for the parallel (antiparallel) to antiparallel (parallel) state switch, resulting in a shrunk switching window size. The non-volatile and reversible 180° magnetization switching is demonstrated by using E-fields with a smaller magnetic field bias as low as 11.5 Oe. The angular magnetic switching originates from competition among the E-field-induced magnetoelastic anisotropy, magnetic shape anisotropy, and Zeeman energy, which is confirmed by micromagnetic simulations.

14.
Stem Cell Res Ther ; 12(1): 261, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941258

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have been reported to promote regeneration in both subjects with acute kidney injury (AKI) and chronic kidney disease (CKD), but their efficacy remains limited, probably because most of the cells accumulate in the lungs, liver, and spleen after an intravenous infusion. Therefore, ultrasound-guided administration of MSCs represents a possible approach to solve this problem. The greater omentum is used to promote cell survival due to its rich vasculature. We hypothesized that ultrasound-guided administration of MSCs combined with greater omentum might be more curative than currently available approaches. METHODS: In this study, we established an aristolochic acid nephropathy (AAN) model by intraperitoneally administering aristolochic acid I sodium salt (AA-I) at a dose of 5 mg/kg body weight on alternate days for 4 weeks. Subsequently, a laparotomy was performed, and the left kidney from which the capsule had been removed was wrapped with the greater omentum. A dose of 2 × 107 MSCs was injected into the space between the greater omentum and the left kidney. Equal amounts of MSCs were administered under ultrasound guidance every second week for a total of 4 treatments. Mice were sacrificed 4 weeks after surgery. Serum creatinine and blood urea levels were measured to assess renal function. qPCR, Western blot, and histological analyses were conducted to further investigate the therapeutic mechanism of MSCs. RESULTS: Ultrasound-guided injection of MSCs into the greater omentum that surrounds the kidney enriched cells in the kidney region for up to 5 days. Renal function tests indicated that MSCs improved renal function to a great extent, as reflected by decreased blood urea nitrogen and serum creatinine levels. In addition, histological analyses showed that MSCs noticeably attenuated kidney injury, as evidenced by the amelioration of tubular necrosis and peritubular interstitial fibrosis. Mitigation of renal interstitial fibrosis was further confirmed by immunohistochemistry, qPCR, and western blotting after MSC treatment. Moreover, immunofluorescence staining revealed that MSCs alleviated inflammatory responses by increasing the counts of CD206+ cells and decreasing the counts of CD68+ cells. MSC migration was initiated in response to AA-I-treated renal epithelial cells in an in vitro migration assay. CONCLUSIONS: These findings suggested that administration of MSCs into the cavity formed by the injured kidney and the greater omentum under ultrasound guidance improved renal function, attenuated kidney injury, and mitigated renal interstitial fibrosis and inflammatory responses. Thus, this approach might be a safe and effective therapy for CKD.


Asunto(s)
Ácidos Aristolóquicos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Riñón , Ratones , Epiplón
15.
ACS Appl Mater Interfaces ; 12(41): 47010-47017, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32966043

RESUMEN

The electrochemical performance of supercapacitors is suppressed by a large number of defects in the interface of heterostructure due to lattice mismatch. In this paper, the (001) oriented rutile MnO2 thin films with different thicknesses were grown on rutile TiO2 substrates. The lattice mismatch between film and substrate was minimized through a Ti diffusion self-adapting layer. The energy-dispersive spectroscopy mappings were used to measure the diffusion range of Ti. The results of high-resolution X-ray diffraction confirmed that the dependence of the out-of-plane lattice parameter on the thickness was consistent with the self-adapting interface model, indicating that Ti diffusion can indeed alleviate the lattice mismatch. In addition, the results of the synchrotron soft X-ray absorption spectrum indicated that the capacitance of the thin films with a large proportion of Ti diffusion increased with electrons involved in the reaction. Although the decrease of carrier density and conductivity of the thinner films depressed the electrochemical activity, it is worth mentioning that the film we designed still has considerable specific capacitance even when it is very thin, which can provide a new idea for the development of thinner and larger capacity potential micro-supercapacitors.

16.
PeerJ ; 8: e9096, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411536

RESUMEN

Potato late blight, one of the most devastating diseases in potato, is caused by the oomycete Phytophthora infestans. Over 20 resistance genes have been cloned including R1, R3a, and R3b. The distinctions between defense response mechanisms mediated by different resistance genes are still unclear. Here we performed transcriptome profiling in three transgenic lines, R1, R3a, and R3b, and wild-type Desiree under inoculation with two P. infestans isolates, 89148 (race 0) and CN152 (super race), using RNA-seq. Compared with wild type, specific differentially expressed genes (DEGs) were identified in the three transgenic lines. The highest number of DEGs occurred in transgenic R3b, with 779 DEGs in response to isolate 89148 and 864 DEGs in response to infection by CN152, followed by transgenic R1 lines with 408 DEGs for isolate 89148 and 267 DEGs for CN152. Based on gene ontology, the most common GO terms (15 for 89148 and 20 for CN152) were enriched in transgenic R3a and R3b lines. This indicates that the defense pathways mediated by R3a and R3b are more similar than those mediated by R1. Further separate GO analysis of up- or down-regulated DEGs showed that the down-regulated DEGs mainly functioned in mediating the resistance of potato to P. infestans 89148 by response to stress biological process and to CN152 by oxidation reduction biological process. KEGG pathways of DNA replication, plant-pathogen interaction and pentose and glucuronate interconversions are unique for transgenic R1, R3a, and R3b lines in incompatible interactions. Quantitative real-time PCR experimental validation confirmed the induced expression of DEGs in the late blight resistance signaling pathway. Our results will lay a solid foundation for further understanding the mechanisms of plant-pathogen interactions, and provide a theoretical reference for durable resistance in potato.

17.
Stem Cell Res Ther ; 10(1): 281, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481100

RESUMEN

Stem cell therapy has been applied in many fields. Basic and clinical studies on stem cell therapy for acute kidney injury (AKI) have been conducted. Stem cells have been found to exert renal protection through a variety of mechanisms, such as regulating the immune system and secreting growth factors, cytokines, and extracellular vesicles (EVs). Among them, EVs are considered to be important mediators for stem cell protection because they contain various biological components, including microRNAs (miRNAs). miRNAs are a class of small RNAs that function in posttranscriptional gene regulation. A number of studies have confirmed that miRNAs in stem cell-derived EVs can protect from AKI. miRNAs can enter the injured renal tissue through EVs released from stem cells, thereby exerting anti-inflammatory, anti-apoptotic, anti-fibrotic, and pro-angiogenesis effects on AKI. However, the stem cell sources and AKI models used in these studies have differed. This article will summarize the miRNAs that play a role in kidney protection in stem cell EVs and clarifies the treatment characteristics and mechanisms of different miRNAs. This may provide a reference for clinical practice for acute and chronic kidney diseases.


Asunto(s)
Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/terapia , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Células Madre/metabolismo , Animales , Citoprotección/fisiología , Vesículas Extracelulares/fisiología , Humanos , Inflamación/metabolismo , Inflamación/terapia , Células Madre/citología
18.
ACS Appl Mater Interfaces ; 11(28): 25569-25577, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31264829

RESUMEN

Electric-field control of magnetism (EFCM) is very important for the exploration of high-density, fast, and nonvolatile random-access memory with ultralow energy consumption. Here, we report the electric-field-induced ferroelectric phase transitions in Pb(Mg1/3Nb2/3)0.82Ti0.18O3 (PMN-0.18PT) and symmetry breaking of EFCM behaviors for corresponding directions in multiferroic heterostructures composed of amorphous ferromagnetic Co40Fe40B20 (CoFeB) and PMN-0.18PT. We uncover a new mechanism behind the unusual phenomena, involving coupling between CoFeB and PMN-0.18PT via complex cooperation of electric-field-induced ferroelectric phase transitions, competition of different ferroelectric domains, and internal electric field in PMN-0.18PT. The deterministic EFCM with reversible and nonvolatile nature opens up a new avenue for exploring EFCM in multiferroic heterostructures and is also significant for applications.

19.
Genome ; 62(5): 295-304, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30998112

RESUMEN

Whether ribosomal genes can be used as DNA barcodes for molecular identification of Demodex (Acariformes: Demodicidae) is unclear. To examine this, Demodex folliculorum, D. brevis, D. canis, and D. caprae were collected for DNA extraction, rDNA fragments amplification, sequencing, and analysis. The V2 and V4 regions of SSU rDNA; D5, D6, and D8 regions of LSU rDNA; and ITS region were obtained from the four morphospecies. BLAST analysis showed that the obtained sequences matched those of Demodex or Aplonobia (Acariformes: Tetranychidae) in Raphignathae. Phylogenetic trees derived from V2, V4, D5, D6, and D8 regions, but not from ITS region, showed that the four species of Demodex clustered independently. Sequence divergence analysis further demonstrated that D5, D6, and D8 regions had obvious barcoding gap between intraspecific and interspecific divergences, with the gap of D5 (16.91%) larger than that of D6 (11.82%) and D8 (4.66%). The V2 and V4 regions did not have a barcoding gap, as the intraspecific and interspecific divergences partially overlapped. For the ITS region, intraspecific and interspecific divergences completely overlapped. These results suggest that the D5, D6, and D8 regions of LSU rDNA, especially D5, are suitable DNA barcodes for Demodex.


Asunto(s)
Código de Barras del ADN Taxonómico , Ácaros/clasificación , Animales , ADN Intergénico/genética , ADN Ribosómico/genética , Ácaros/genética , Filogenia
20.
Materials (Basel) ; 11(9)2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30217052

RESUMEN

The VO2 thin films with sharp metal⁻insulator transition (MIT) were epitaxially grown on (001)-oriented Yttria-stabilized zirconia substrates (YSZ) using radio-frequency (RF) magnetron sputtering techniques. The MIT and structural phase transition (SPT) were comprehensively investigated under in situ temperature conditions. The amplitude of MIT is in the order of magnitude of 104, and critical temperature is 342 K during the heating cycle. It is interesting that both electron concentration and mobility are changed by two orders of magnitude across the MIT. This research is distinctively different from previous studies, which found that the electron concentration solely contributes to the amplitude of the MIT, although the electron mobility does not. Analysis of the SPT showed that the (010)-VO2/(001)-YSZ epitaxial thin film presents a special multi-domain structure, which is probably due to the symmetry matching and lattice mismatch between the VO2 and YSZ substrate. The VO2 film experiences the SPT from the M1 phase at low temperature to a rutile phase at a high temperature. Moreover, the SPT occurs at the same critical temperature as that of the MIT. This work may shed light on a new MIT behavior and may potentially pave the way for preparing high-quality VO2 thin films on cost-effective YSZ substrates for photoelectronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...