Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Am Chem Soc ; 146(19): 13488-13498, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709095

RESUMEN

Self-assembling peptides represent a captivating area of study in nanotechnology and biomaterials. This interest is largely driven by their unique properties and the vast application potential across various fields such as catalytic functions. However, design complexities, including high-dimensional sequence space and structural diversity, pose significant challenges in the study of such systems. In this work, we explored the possibility of self-assembled peptides to catalyze the hydrolysis of hydrosilane for hydrogen production using ab initio calculations and carried out wet-lab experiments to confirm the feasibility of these catalytic reactions under ambient conditions. Further, we delved into the nuanced interplay between sequence, structural conformation, and catalytic activity by combining modeling with experimental techniques such as transmission electron microscopy and nuclear magnetic resonance and proposed a dual mode of the microstructure of the catalytic center. Our results reveal that although research in this area is still at an early stage, the development of self-assembled peptide catalysts for hydrogen production has the potential to provide a more sustainable and efficient alternative to conventional hydrogen production methods. In addition, this work also demonstrates that a computation-driven rational design supplemented by experimental validation is an effective protocol for conducting research on functional self-assembled peptides.


Asunto(s)
Hidrógeno , Péptidos , Hidrógeno/química , Catálisis , Péptidos/química , Modelos Moleculares , Hidrólisis
2.
Chemistry ; 30(17): e202304167, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243781

RESUMEN

Although fullerene derivatives such as [6,6]-phenyl-C61/C71-butyric acid methyl ester (PC61BM/PC71BM) have dominated the the photoactive acceptor materials in bulk heterojunction organic solar cells (OSCs) for decades, they have several drawbacks such as weak absorption, limited structural tunability, prone to aggregation, and high costs of production. Constructing non-fullerene small molecules with three-dimensional (3D) molecular geometry is one of the strategies to replace fullerenes in OSCs. In this study, a 3D molecule, contorted hexa-cata-hexabenzocoronene tetra perylenediimide (HBC-4-PDI), was designed and synthesized. HBC-4-PDI shows a wide and strong light absorption in the whole UV-vis region as well as suitable energy levels as an acceptor for OSCs. More importantly, the 3D construction effectively reduced the self-aggregation of c-HBC, leading to an appropriate scale phase separation of the blend film morphology in OSCs. A preliminary power conversion efficiency of 2.70 % with a champion open-circuit voltage of 1.06 V was obtained in OSCs with HBC-4-PDI as the acceptor, which was the highest among the previously reported OSCs based on c-HBC derivatives. The results indicated that HBC-4-PDI may serve as a good non-fullerene acceptor for OSCs.

3.
Dalton Trans ; 53(2): 520-524, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38051219

RESUMEN

Developing low-cost and self-supported bifunctional catalysts for highly efficient water splitting devices is of great significance. Herein, different from previously reported NiFe2O4-based electrocatalysts, we have grown nano-NiFe2O4 directly onto the iron foil (IF) surface and in situ introduced Sn4+ into NiFe2O4. The resulting experimental phenomena confirmed that the as-synthesized Sn-NiFe2O4/IF can deliver large-current densities (>1000 mA cm-2) during oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) processes at a low overpotential. The needed overpotentials at the current density of 10 and 1000 mA cm-2 are 231 and 368 mV for OER and 57 and 439 mV for HER, respectively. Additionally, when applied for the two-electrode water splitting, the corresponding needed voltage for Sn-NiFe2O4/IF at the current density of 10 mA cm-2 was only 1.56 V, which was comparable to the commercial Pt/C-RuO2/IF electrode. Thus, the introduced Sn4+ greatly enhanced the electrocatalytic property of Sn-NiFe2O4/IF, resulting in a superior bifunctional catalyst that can be applied for large-scale hydrogen production.

4.
Mol Ther ; 32(1): 168-184, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37974400

RESUMEN

Circular mRNA (cmRNA) is particular useful due to its high resistance to degradation by exonucleases, resulting in greater stability and protein expression compared to linear mRNA. T cell receptor (TCR)-engineered T cells (TCR-T) represent a promising means of treating viral infections and cancer. This study aimed to evaluate the feasibility and efficacy of cmRNA in antigen-specific-TCR discovery and TCR-T therapy. Using human cytomegalovirus (CMV) pp65 antigen as a model, we found that the expansion of pp65-responsive T cells was induced more effectively by monocyte-derived dendritic cells transfected with pp65-encoding cmRNA compared with linear mRNA. Subsequently, we developed cmRNA-transduced pp65-TCR-T (cm-pp65-TCR-T) that specifically targets the CMV-pp65 epitope. Our results showed that pp65-TCR could be expressed on primary T cells for more than 7 days. Moreover, both in vitro killing and in vivo CDX models demonstrated that cm-pp65-TCR-T cells specifically and persistently kill pp65-and HLA-expressing tumor cells, significantly prolonging the survival of mice. Collectively, our results demonstrated that cmRNA can be used as a more effective technical approach for antigen-specific TCR isolation and identification, and cm-pp65-TCR-T may provide a safe, non-viral, non-integrated therapeutic approach for controlling CMV infection, particularly in patients who have undergone allogeneic hematopoietic stem cell transplantation.


Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Células Madre Hematopoyéticas , Humanos , Animales , Ratones , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/terapia , Citomegalovirus/genética , Linfocitos T , Receptores de Antígenos de Linfocitos T/genética , Proteínas de la Matriz Viral/genética
5.
Genome Biol ; 24(1): 247, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904244

RESUMEN

Genomic abnormalities are strongly associated with cancer and infertility. In this study, we develop a simple and efficient method - multiple genetic abnormality sequencing (MGA-Seq) - to simultaneously detect structural variation, copy number variation, single-nucleotide polymorphism, homogeneously staining regions, and extrachromosomal DNA (ecDNA) from a single tube. MGA-Seq directly sequences proximity-ligated genomic fragments, yielding a dataset with concurrent genome three-dimensional and whole-genome sequencing information, enabling approximate localization of genomic structural variations and facilitating breakpoint identification. Additionally, by utilizing MGA-Seq, we map focal amplification and oncogene coamplification, thus facilitating the exploration of ecDNA's transcriptional regulatory function.


Asunto(s)
Variaciones en el Número de Copia de ADN , Oncogenes , Genómica/métodos , Regulación de la Expresión Génica , ADN
6.
PLoS Biol ; 21(9): e3002309, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37713449

RESUMEN

The proton-activated chloride (PAC) channel plays critical roles in ischemic neuron death, but its activation mechanisms remain elusive. Here, we investigated the gating of PAC channels using its novel bifunctional modulator C77304. C77304 acted as a weak activator of the PAC channel, causing moderate activation by acting on its proton gating. However, at higher concentrations, C77304 acted as a weak inhibitor, suppressing channel activity. This dual function was achieved by interacting with 2 modulatory sites of the channel, each with different affinities and dependencies on the channel's state. Moreover, we discovered a protonation-independent voltage activation of the PAC channel that appears to operate through an ion-flux gating mechanism. Through scanning-mutagenesis and molecular dynamics simulation, we confirmed that E181, E257, and E261 in the human PAC channel serve as primary proton sensors, as their alanine mutations eliminated the channel's proton gating while sparing the voltage-dependent gating. This proton-sensing mechanism was conserved among orthologous PAC channels from different species. Collectively, our data unveils the polymodal gating and proton-sensing mechanisms in the PAC channel that may inspire potential drug development.

7.
J Chem Theory Comput ; 19(19): 6718-6732, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37725682

RESUMEN

Precise regulation of the peptide self-assembly into ordered nanostructures with intriguing properties has attracted intense attention. However, predicting peptide assembly at atomic resolution is a challenge due to both the structural flexibility of peptides and the associated huge computational costs. A machine learning-guided adaptive parametrization method was proposed for developing a mixed atomic and coarse-grained (CG) model through a multiobjective optimization strategy. Our model incorporates the united-atom (UA) model for diphenylalanine (P) and the polarizable electrostatic-variable coarse-grained (VaCG) model for aqueous ionic liquid [BMIM]+[BF4]- solution. In this mixed model, the coupling van der Waals (vdW) interaction is addressed by introducing virtual sites (VS) in the UA model to interact with solvent CG beads. The coupling parameters, including the electrostatic parameter and vdW parameters, are automatically optimized through ML-guided adaptive parametrization. The performance of this model was tested by some microstructural properties, e.g., the average number of P-P intermolecular hydrogen bonds (HBs) and radius distribution functions (RDFs) between P and different fragments of IL, in comparison with all-atom (AA) simulations. The computational cost is significantly reduced using such a parametrization scheme, which could search tens of thousands of force-field parameter sets, while needing only a small fraction of them to be assessed with molecular dynamics (MD) simulations. We used such a mixed resolution model to investigate the self-assembly in IL-water mixtures with variants of IL concentration (X). The long-range-ordered fibril structure is formed in a pure water system (X = 0). With an increase of IL concentrations, the formation of an ordered self-assembly nanostructure is prohibited, instead forming branched fibril at X = 2 mol % or amorphous aggregates when X > 10 mol %, resulting from the interplay between π-stacking and HB interactions between P and IL. The qualitative agreement between the simulated structures and the observed morphologies in experiments indicates the applicability of ML-guided parametrization strategy in the study of complex systems, such as polymers, lipid bilayers, and polysaccharides.

8.
Plant Dis ; 107(9): 2830-2834, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37707825

RESUMEN

Tea leaf spot caused by Didymella bellidis can seriously reduce the productivity and quality of tea (Camellia sinensis var. sinensis) leaves in Guizhou Province, southwest China. Analysis of the relationship between messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) of tea could provide insights into the plant-pathogen interaction. In this study, high-throughput sequencing of mRNAs and lncRNAs from tea leaves during infection by D. bellidis was conducted using the Illumina Novaseq 6000 platform. Infection by D. bellidis hyphae resulted in up- or downregulation of 553 and 191 of the differentially expressed mRNAs (DEmRNAs), respectively. As the S gene number (total number of genes with significantly differential expression annotated in the specified Gene Ontology [GO] database), three were enriched with respect to the defense response to the fungus at the biological process level. Expression of the DEmRNAs peroxidase 21 (TEA000222.1) and mcht-2 (TEA013240.1) originating from tea leaves were upregulated during challenge by D. bellidis hyphae, whereas expression of the LRR receptor-like serine/threonine-protein kinase ERECTA (TEA016781.1) gene was downregulated. The infection of D. bellidis hyphae resulted in up- or downregulation of 227 and 958 of the differentially expressed lncRNAs (DElncRNAs). The DEmRNAs associated with uncharacterized LOC101499401 (TEA015626.1), uncharacterized protein (TEA014125.1), structural maintenance of chromosomes protein 1 (TEA001660.1), and uncharacterized protein (TEA017727.1) occurred as a result of cis regulation by DElncRNAs MSTRG.20036, MSTRG.3843, MSTRG.26132, and MSTRG.56701, respectively. The expression profiling and lncRNA/mRNA association prediction in the tea leaves infected by D. bellidis will provide a valuable resource for further research into disease resistance.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética ,
9.
Anal Chem ; 95(32): 12097-12103, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37531089

RESUMEN

Seeking and constructing superior photoactive materials have the potential to improve the performance of photoelectrochemical (PEC) biosensors. In this work, we proposed a novel mimosa-like ternary inorganic composite with a significantly enhanced light-harvesting ability and photogenerated carrier separation rate. This ternary photoactive material was obtained via electrodeposition of gold nanoparticles (Au) on the surface of transition metal sulfide composite of CdS and NiS (CdS-NiS/Au). The experimental results showed that the high initial photocurrent was acquired on CdS-NiS/Au (68-fold higher than that of individual CdS) with the synergistic effect of p-n heterojunction, Schottky junction, and the eminent optical properties of gold nanoparticles. Meanwhile, using silver nanoclusters prepared by link DNA protection as an effective quencher, integrating the duplex-specific nuclease-assisted rolling circle amplification strategy, a "Signal ON" PEC biosensor was fabricated for the detection of microRNA 21 (miRNA 21). With the release of the quencher, the recovered photocurrent is able to achieve determination of miRNA 21 within the range from 10 aM to 1 pM with a detection limit down to 4.6 aM (3σ). Importantly, this work not only provides a superb idea for designing ternary inorganic heteromaterials with exceptional photoactive ability but also allows the detection of other biomarkers by selecting appropriate recognition units.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , Mimosa , Oro/química , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección
10.
Adv Sci (Weinh) ; 10(28): e2300560, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37590310

RESUMEN

Epidemiological studies show an association between inflammatory bowel disease (IBD) and increased risk of thrombosis. However, how IBD influences thrombosis remains unknown. The current study shows that formation of neutrophil extracellular traps (NETs) significantly increased in the dextran sulfate sodium (DSS)-induced IBD mice, which in turn, contributes to thrombus formation in a NETs-dependent fashion. Furthermore, the exosomes isolated from the plasma of the IBD mice induce arterial and venous thrombosis in vivo. Importantly, proinflammatory factors-exposed intestinal epithelial cells (inflamed IECs) promote neutrophils to release NETs through their secreted exosomes. RNA sequencing revealed that LINC00668 is highly enriched in the inflamed IECs-derived exosomes. Mechanistically, LINC00668 facilitates the translocation of neutrophil elastase (NE) from the cytoplasmic granules to the nucleus via its interaction with NE in a sequence-specific manner, thereby inducing NETs release and thrombus formation. Importantly, berberine (BBR) suppresses the nuclear translocation of NE and subsequent NETs formation by inhibiting the interaction of LINC00668 with NE, thus exerting its antithrombotic effects. This study provides a novel pathobiological mechanism linking IBD and thrombosis by exosome-mediated NETs formation. Targeting LINC00668 can serve as a novel molecular treatment strategy to treat IBD-related thrombosis.


Asunto(s)
Exosomas , Trampas Extracelulares , Enfermedades Inflamatorias del Intestino , Trombosis , Animales , Ratones , Trombosis/etiología , Neutrófilos
11.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37108519

RESUMEN

Latent HIV is a key factor that makes AIDS difficult to cure. Highly effective and specific latent HIV activators can effectively activate latent HIV, and then combined with antiretroviral therapy to achieve a functional cure of AIDS. Here, four sesquiterpenes (1-4) including a new one (1), five flavonoids (5-9) including three biflavonoid structures, and two lignans (10 and 11) were obtained from the roots of Wikstroemia chamaedaphne. Their structures were elucidated through comprehensive spectroscopic analyses. The absolute configuration of 1 was determined by experimental electronic circular dichroism. NH2 cell model was used to test the activity of these 11 compounds in activating latent HIV. Oleodaphnone (2) showed the latent HIV activation effect as well as the positive drug prostratin, and the activation effect was time- and concentration-dependent. Based on transcriptome analysis, the underlying mechanism was that oleodaphnone regulated the TNF, C-type lectin receptor, NF-κB, IL-17, MAPK, NOD-like receptor, JAK-Stat, FoxO, and Toll-like receptor signaling pathways. This study provides the basis for the potential development of oleodaphnone as an effective HIV latency-reversing agent.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , VIH-1 , Humanos , Activación Viral , Latencia del Virus , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , VIH-1/genética , Perfilación de la Expresión Génica , Linfocitos T CD4-Positivos/metabolismo
12.
Phys Rev E ; 107(2-1): 024411, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36932600

RESUMEN

The movement of a group of biological individuals, such as fish schools, can evolve from disordered motions to synergistic movements or even ordered patterns. However, the physical origins behind such emergent phenomena of complex systems remain elusive. Here, we established a high-precision protocol for studying the collective behavior of biological groups in quasi-two-dimensional systems. Based on our video recording of ∼600h of fish movements, we extracted a force map of the interactions between fish from their trajectories using the convolution neural network. Presumably, this force implies the fish's perception of the surrounding individuals, the environment, and their response to social information. Interestingly, the fish in our experiments were predominantly in a seemingly disordered swarm state, but their local interactions were clearly specific. Combining such local interactions with the inherent stochasticity of the fish movements, we reproduced the collective motions of the fish through simulations. We demonstrated that a delicate balance between the specific local force and the intrinsic stochasticity is essential for ordered movements. This study presents implications for self-organized systems that use basic physical characterization to produce higher-level sophistication.


Asunto(s)
Conducta Animal , Peces , Animales , Conducta Animal/fisiología , Peces/fisiología , Movimiento , Movimiento (Física) , Modelos Biológicos
13.
ACS Appl Mater Interfaces ; 15(13): 16975-16983, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36943036

RESUMEN

Developing crystalline porous materials with highly efficient CO2 selective adsorption capacity is one of the key challenges to carbon capture and storage (CCS). In current studies, much more attention has been paid to the crystalline and porous properties of crystalline porous materials for CCS, while the defects, which are unavoidable and ubiquitous, are relatively neglected. Herein, for the first time, we propose a monomer-symmetry regulation strategy for directional defect release to achieve in situ functionalization of COFs while exposing uniformly distributed defect-aldehyde groups as functionalization sites for selective CO2 capture. The regulated defective COFs possess high crystallinity, good structural stability, and a large number of organized and functionalized aldehyde sites, which exhibit one of the highest selective separation values of all COF sorbing materials in CO2/N2 selective adsorption (128.9 cm3/g at 273 K and 1 bar, selectivity: 45.8 from IAST). This work not only provides a new strategy for defect regulation and in situ functionalization of COFs but also provides a valuable approach in the design and preparation of new adsorbents for CO2 adsorption and CO2/N2 selective separation.

14.
Cancer Med ; 12(7): 7951-7961, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36629093

RESUMEN

BACKGROUND: Brain metastasis (BM) in triple-negative breast cancer (TNBC) patients is associated with significant morbidity and mortality. In this research we aimed to develop a nomogram to predict the prognosis of TNBC patients with BMs (TNBC-BM) and explore the potential risk factors. METHODS: We used data from the Surveillance, Epidemiology, and End Results (SEER) database. A prognostic nomogram was built and validated based on patients with BM at newly diagnosed TNBC (nTNBC-BM). Its effect on TNBC patients with BM was also validated in an extended group. The prognostic effect of treatment and risk factors for nTNBC-BM were further tested. RESULTS: A nomogram was constructed and validated to predict overall survival (OS) in TNBC-BM patients. For patients with BM diagnosed at the initial treatment or later course, the C-index (0.707, 0.801, and 0.685 in the training, validation, and extended groups, respectively) and calibration plots showed the acceptable prognostic accuracy and clinical applicability of the model. Surgery on the primary tumor and chemotherapy were found to confer significantly better OS (11 months vs. 4 months; 5 months vs. 3 months, respectively). In addition, advanced tumor/nodal stage and bilateral cancer were associated with a higher risk of nTNBC-BM. CONCLUSION: We developed a sensitive and discriminative nomogram to predict OS in TNBC-BM patients, both at initial diagnosis and the latter course. nTNBC-BM patients may benefit more from surgery and chemotherapy than from radiotherapy. In addition, in the predictive model, TNBC patients harboring advanced tumor/nodal stages and bilateral tumors were more likely to have BM at initial diagnosis.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/epidemiología , Neoplasias de la Mama Triple Negativas/terapia , Pronóstico , Nomogramas , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/secundario , Factores de Riesgo
15.
Bioorg Chem ; 131: 106337, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603244

RESUMEN

With the soaring number of multidrug-resistant bacteria, it is imperative to develop novel efficient antibacterial agents and discovery new antibacterial pathways. Herein, we designed and synthesized a series of structurally novel glycyrrhetinic acid (GA) derivatives against multidrug-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these compounds was evaluated using the microbroth dilution method, agar plate coating experiments and real-time growth curves, respectively. Most of the target derivatives showed moderate antibacterial activity against Staphylococcus aureus (S. aureus) and MRSA (MIC = 3.125-25 µM), but inactivity against Escherichia coli (E. Coli) and Pseudomonas aeruginosa (P. aeruginosa) (MIC > 200 µM). Among them, compound 11 had the strongest antibacterial activity against MRSA, with an MIC value of 3.125 µM, which was 32 times and 64 times than the first-line antibiotics penicillin and norfloxacin, respectively. Additionally, transcriptomic (RNA-seq) and quantitative polymerase chain reaction (qPCR) analysis revealed that the antibacterial mechanism of compound 11 was through blocking the arginine biosynthesis and metabolic and the H2S biogenesis. Importantly, compound 11 was confirmed to have good biocompatibility through the in vitro hemolysis tests, cytotoxicity assays and the in vivo quail chicken chorioallantoic membrane (qCAM) experiments. Current study provided new potential antibacterial candidates from glycyrrhetinic acid derivatives for clinical treatment of MRSA infections.


Asunto(s)
Antibacterianos , Arginina , Diseño de Fármacos , Ácido Glicirretínico , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Arginina/biosíntesis , Escherichia coli/efectos de los fármacos , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo
16.
J Assist Reprod Genet ; 40(3): 537-552, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36695944

RESUMEN

PURPOSE: To elucidate the characterization of extracellular vesicles (EVs) in the follicular fluid-derived extracellular vesicles (FF-EVs) and discover critical molecules and signaling pathways associating with the etiology and pathobiology of PCOS, the differentially expressed miRNAs (DEmiRNAs) and differentially expressed proteins profiles (DEPs) were initially explored and combinedly analyzed. METHODS: First, the miRNA and protein expression profiles of FF-EVs in PCOS patients and control patients were compared by RNA-sequencing and tandem mass tagging (TMT) proteomic methods. Subsequently, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used to analyze the biological function of target genes of DEmiRNAs and DEPs. Finally, to discover the functional miRNA-target gene-protein interaction pairs involved in PCOS, DEmiRs target gene datasets and DEPs datasets were used integratedly. RESULTS: A total of 6 DEmiRNAs and 32 DEPs were identified in FF-EVs in patients with PCOS. Bioinformatics analysis revealed that DEmiRNAs target genes are mainly involved in thiamine metabolism, insulin secretion, GnRH, and Apelin signaling pathway, which are closely related to the occurrence of PCOS. DEPs also closely related to hormone metabolism processes such as steroid hormone biosynthesis. In the analysis integrating DEmiRNAs target genes and DEPs, two molecules, GRAMD1B and STPLC2, attracted our attention that are closely associated with cholesterol transport and ceramide biosynthesis, respectively. CONCLUSION: Dysregulated miRNAs and proteins in FF-EVs, mainly involving in hormone metabolism, insulin secretion, neurotransmitters regulation, adipokine expression, and secretion, may be closely related to PCOS. The effects of GRAMD1B and STPLC2 on PCOS deserve further study.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Síndrome del Ovario Poliquístico , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Líquido Folicular/metabolismo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Proteómica , Adipoquinas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
17.
Cancer Sci ; 114(2): 619-629, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36221784

RESUMEN

Vimentin expression in tumor tissues and the tumor-stroma ratio (TSR) have been demonstrated as strong prognostic factors for cancer patients, but whether they are predictive markers of neoadjuvant chemoradiotherapy (nCRT) outcome in locally advanced rectal cancer (LARC) patients is poorly understood. This study aimed to explore the predictive significance of vimentin and TSR combined for nCRT response in LARC patients. Imaging mass cytometry (IMC) was performed to determine the association of vimentin and TSR with nCRT response in six LARC patients [three achieved pathological complete response (pCR), three did not]. Immunohistochemistry (IHC) for vimentin and TSR on biopsy tissues before nCRT and logistic regression analysis were performed to further evaluate their predictive value for treatment responses in a larger patient cohort. A trend of decreased vimentin expression and increased TSR in the pCR group was revealed by IMC. In the validation group, vimentin [odds ratio (OR) 0.260, 95% confidence interval (CI) 0.102-0.602, p = 0.002] and TSR (OR 4.971, 95% CI 1.933-15.431, p = 0.002) were associated with pCR by univariate analysis. Patients in the vimentin-low/TSR-low or vimentin-high/TSR-high (OR 5.211, 95% CI 1.248-35.582, p = 0.042) and vimentin-low/TSR-high groups (OR 11.846, 95% CI 3.197-77.079, p = 0.001) had significantly higher odds of pCR. By multivariate analysis, only the combination of vimentin and TSR was an independent predictor for nCRT response (OR 9.324, 95% CI 2.290-63.623, p = 0.006). Our study suggested that the combined assessment of vimentin and TSR can provide additive significance and may be a promising indicator of nCRT response in LARC patients.


Asunto(s)
Neoplasias Primarias Secundarias , Neoplasias del Recto , Humanos , Neoplasias del Recto/patología , Terapia Neoadyuvante , Vimentina , Quimioradioterapia/métodos , Recto/patología , Estudios Retrospectivos
18.
Cancer Med ; 12(2): 2075-2088, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35789544

RESUMEN

BACKGROUND: Microsatellite instability-high (MSI-H) subgroup of gastric cancer (GC) is characterized by a high tumor mutational burden, increased lymphocytic infiltration, and enhanced inflammatory cytokines. GC patients with MSI-H status have a good response to immune checkpoint blockade management. However, heterogeneity within the subtype and the underlying mechanisms of shaping tumor microenvironments remain poorly understood. METHODS: RNA expression levels and clinical parameters of GC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The data were analyzed using single-sample Gene Set Enrichment Analysis (ssGSEA), univariate Cox regression, multivariate Cox regression, and Least Absolute Shrinkage Selection Operator (LASSO) regression. In addition, multiplex immunohistochemistry (mIHC) was used in our clinical cohort for the tumor microenvironment study. RESULTS: By ssGSEA and survival analysis, the EMT signaling pathway was identified as a representative pathway, which can stratify the patients with MSI-H GC with significant survival predictive power. Then, a novel representative EMT-related five-gene signature (namely CALU, PCOLCE2, PLOD2, SGCD, and THBS2) was established from EMT signaling gene set, which sensitivity and specificity were further validated in the independent GEO database (GSE62254) cohort for disease outcome prediction. Based on public single-cell data and in situ immunohistochemistry, we found that most of these five genes were abundantly expressed in cancer-associated fibroblasts. Furthermore, patients with high or low risk divided by this five-gene signature exhibited a strong correlation of the distinct patterns of tumor immune microenvironment. By mIHC staining of sections from 30 patients with MSI-H status, we showed that the patients with better prognoses had the increased infiltration of CD8+ cells in the primary tumoral tissue. CONCLUSION: Our study developed a simple five-gene signature for stratifying MSI-H GC patients with survival predictive power.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Inestabilidad de Microsatélites , Genes Reguladores , Linfocitos T CD8-positivos , Pronóstico , Microambiente Tumoral/genética
19.
J Appl Anim Welf Sci ; 26(2): 218-228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34470518

RESUMEN

Enriched environment (EE) is an important animal experimental paradigm to decipher gene-environment interaction. It is thought to be efficient in aiding recovery from certain metabolism disorders or cognitive impairments. Recently, the effects of EE during adolescence in mice gradually draw much attention. We first established an EE model in adolescent mice, dissected lipid metabolism, and further examined baseline level of anxiety and depression by multiple behavioral tests, including open field test (OFT), elevated zero maze (EZM), tail suspension test (TST), and forced swimming test (FST). EE mice exhibited lower weights, lower cholesterol than standard housing (SH) mice. Behaviorally, EE mice traveled more distance and had higher velocity than SH mice in OFT and EZM. Besides, EE mice showed reduced anxiety levels in OFT and EZM. Furthermore, EE mice also had less immobility time than SH mice in TST and FST. Thus, these results suggest that EE during adolescence has metabolic and behavioral benefits in mice.


Asunto(s)
Ansiedad , Metabolismo de los Lípidos , Animales , Ratones , Ansiedad/metabolismo , Ansiedad/psicología , Natación , Conducta Animal
20.
Food Chem ; 403: 134376, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36179640

RESUMEN

To meet the growing concerns about food safety, sensors for tetracycline antibiotics have been urgently needed. Herein, we synthesized a series of binuclear coordination polymers (Tb-Zn-CPs) based on lanthanide and transition metal ions by solvothermal method using [1,1':4',1''-terphenyl]-3,3'',5,5''-tetracarboxylic acid, Tb(NO3)3 and Zn(NO3)2. The morphologies and electrochemiluminescence (ECL) performances of Tb-Zn-CPs varied with different molar ratios of terbium and zinc ions (Tb:Zn). The flower-like Tb-Zn-CP (9:3) possessed the highest ECL intensity due to the ligand antenna effect and the sensitization of Zn2+. An ECL sensor for the detection of tetracycline (TC) was constructed utilizing Tb-Zn-CP (9:3) as a novel ECL luminophore and potassium persulfate as a coreactant. The proposed sensor achieved sensitive detection of TC in the range of 5.0 fmol·L-1 to 3.0 mmol·L-1 with a low limit of detection (1.6 fmol·L-1). It also was applied for TC detection in dairy products with good recovery rates.


Asunto(s)
Técnicas Biosensibles , Polímeros , Mediciones Luminiscentes/métodos , Tetraciclina , Terbio , Antibacterianos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...