Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 22(8): 1007-1012, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37349394

RESUMEN

Experimental mapping of transmission is essential for understanding and controlling charge transport through molecular devices and materials. Here we developed a single-molecule photoelectron tunnelling spectroscopy approach for mapping transmission beyond the HOMO-LUMO gap of the single diketopyrrolopyrrole molecule junction using an ultrafast-laser combined scanning tunnelling microscope-based break junction set-up at room temperature. Two resonant transport channels of ultrafast photocurrent are found by our photoelectron tunnelling spectroscopy, ranging from 1.31 eV to 1.77 eV, consistent with the LUMO + 1 and LUMO + 2 in the transmission spectrum obtained by density functional theory calculations. Moreover, we observed the modulation of resonant peaks by varying bias voltages, which demonstrates the ability to quantitatively characterize the effect of the electric field on frontier molecular orbitals. Our single-molecule photoelectron tunnelling spectroscopy offers an avenue that allows us to explore the nature of energy-dependent charge transport through single-molecule junctions.

2.
J Phys Chem Lett ; 14(19): 4419-4425, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37140962

RESUMEN

Here, we investigate the photoconductivity of gallium oxide thin films at different temperatures using time-resolved terahertz spectroscopy. The photogenerated electrons in the conduction band show a monoexponential decay, implying a first-order electron depopulation mechanism. The electron lifetime increases with rising temperature, and this trend coincides with the temperature dependence of the electron mobility rather than diffusion coefficient, suggesting that electron-hole recombination is determined by directional electron drift instead of random diffusion. The electron mobilities extracted from the transient terahertz conductivity are substantially greater than the previously reported Hall mobilities over a wide temperature range, and this is probably because the electron drift in response to the terahertz field is immune from scattering with macroscopic defects. Thus, the mobilities measured here may represent the intrinsic limit of the electron mobility in gallium oxide crystals. Our finding suggests that the current Hall mobility in this wide bandgap semiconductor is still far below the limit, and the long-range electron transport can be further increased by improving the crystalline quality.

3.
J Chem Phys ; 157(13): 134710, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36209025

RESUMEN

The photocarrier recombination in van der Waals layers may determine the device performance based on these materials. Here, we investigated the photocarrier dynamics in a multilayer indium selenide nanofilm using transient absorption spectroscopy. The sub-bandgap transient absorption feature was attributed to the indirect intraband absorption of the photocarriers, which was then exploited as a probe to monitor the photocarrier dynamics. With increasing pump intensities, the photocarrier decay was accelerated because of the rising contribution from a bimolecular recombination channel that was then assigned to exciton-exciton annihilation. The rate constant of the exciton-exciton annihilation was given as (1.8 ± 0.1) × 10-15 cm2 ps-1 from a global fitting of the photocarrier decay kinetics for different pump intensities. Our finding suggests that, in contrast with their monolayer counterpart, the exciton-exciton annihilation is rather inefficient in multilayers due to their weaker Coulomb interaction. Hence, compared with monolayers, the lifetime of photocarriers in multilayers would not be significantly reduced under high-intensity pump conditions, and the apparent photocarrier lifetime could be further improved just by suppressing the monomolecular recombination channels such as trapping.

4.
J Phys Chem Lett ; 13(22): 4988-4994, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35648596

RESUMEN

The antimony chalcogenide crystals are composed of quasi-one-dimensional [Sb4X6]n ribbons, which lead to strong anisotropic optical and electronic properties. An attempt to exploit photoconductivity anisotropy in the device fabrication may introduce a rewarding strategy to propel the development of the antimony chalcogenide solar cells. To achieve this, understanding of the dynamic evolution of the photoconductivity anisotropy is required. Here, the photoconductivities along different lattice directions in an antimony selenide single crystal are investigated by time-resolved terahertz spectroscopy. We find that electron trapping results in a variation of the photoconductivity anisotropy accompanied by a decrease in the photoconductivity magnitude, while electron-hole recombination only reduces the magnitude but does not affect the anisotropy. Therefore, measuring the temporal evolution of photoconductivity anisotropy can provide a wealth of information regarding the nature of the photocarrier and also render a probe to selectively evaluate the photoconductivity decay mechanisms.

5.
J Phys Chem Lett ; 13(24): 5488-5494, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35687791

RESUMEN

In lead halide perovskites, owing to the strong Fröhlich coupling, carrier dynamics that governs the optoelectronic performance is greatly affected by the lattice vibrations. In this emerging class of materials, injected hot carriers quickly relax by emitting optical phonons, and if this process is sufficiently fast, hot optical phonons can be generated, which may in turn hamper the carrier transport. However, the transient interaction between hot phonons and carriers has not yet been investigated. Herein, we identified the transient absorption feature of hot phonons in lead bromide perovskites and then extracted the hot-phonon dynamics. The hot-phonon decay mechanism was uncovered by temperature-dependent measurements. The hot-phonon decay in lead bromide perovskites was an order of magnitude faster than that in GaAs, attributed to the large anharmonicity arising from the lattice softness and structural fluctuation. The carrier mobility was also transiently suppressed by hot phonons, and the mobility recovery was accompanied by the decay of hot phonons.

6.
J Phys Chem Lett ; 12(50): 12033-12039, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34904836

RESUMEN

The self-trapping of a free carrier in transition-metal oxides can lead to a small polaron, which is responsible for the inadequate performance of the oxide-based optoelectronic applications. Thus, fundamental understanding of the self-trapping mechanism is of key importance for improving the performance of these applications. Herein, the self-trapping in Co3O4 epitaxial monocrystalline films is investigated primarily by transient absorption spectroscopy. The spectral evolution corresponding to the ultrafast transition from free carriers to small polarons is identified, which allows us to extract the self-trapping kinetics. The relationship between the self-trapping rate and temperature suggests a lack of thermal activation energy. A barrierless self-trapping mechanism derived from the small polaron framework is then proposed, which can successfully describe the observation that self-trapping rate decreases linearly with increasing temperature. Given that small polarons are ubiquitous in transition-metal oxides, this self-trapping mechanism is potentially a general phenomenon in these materials.

7.
Carbohydr Polym ; 174: 750-759, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28821128

RESUMEN

An appropriate surface chemical property is crucial in tissue engineering scaffolds, which promotes cell attachment and proliferation. A biomimetic composite scaffold with a polydopamine (PDA) coating layer on electrospun poly(lactic acid) (PLA)/cellulose nanofibrils (CNF) composite nanofiber was developed in this study. PLA/CNF composite nanofibers were fabricated and then coated via treatment with a dopamine solution. The PDA coating layer was successfully formed on the surface of the PLA/CNF composite nanofiber by using a simple, environment-friendly, and effective procedure. Results indicated that the addition of CNF into the PLA matrix can effectively improve the deposition rate of the PDA coating layer on the surface of the composite nanofiber during the initial stage of coating because of hydrogen bonding between the CNF and PDA molecular chains. The hydrophilicity and mechanical properties of the PLA/CNF-PDA scaffold were higher than those of the PLA/CNF scaffold. In addition, the cell culture test showed that the adhesion, proliferation, and growth of human mesenchymal stem cells (hMSCs) cultured on the PLA/CNF-PDA scaffold were significantly enhanced relative to those cultured on the PLA/CNF scaffold because of the introduction of the PDA coating. This finding suggested that surface biofunctionalization via the PDA coating layer could simply and effectively enhance cell biocompatibility for polymer-based scaffolds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...