Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 38(15): e23870, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39120151

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are successfully employed for hematological transplantations, and impaired HSPC function causes hematological diseases and aging. HSPCs maintain the lifelong homeostasis of blood and immune cells through continuous self-renewal and maintenance of the multilineage differentiation potential. TMEM106B is a transmembrane protein localized on lysosomal membranes and associated with neurodegenerative and cardiovascular diseases; however, its roles in HSPCs and hematopoiesis are unknown. Here, we established tmem106bb-/- knockout (KO) zebrafish and showed that tmem106bb KO reduced the proliferation of HSPCs during definitive hematopoiesis. The differentiation potential of HSPCs to lymphoid lineage was reduced, whereas the myeloid and erythroid differentiation potentials of HPSCs were increased in tmem106bb-/- zebrafish. Similar results were obtained with morpholino knockdown of tmem106bb. Mechanistically, TMEM106B interacted with LAMP2A, the lysosomal associated membrane protein 2A, impaired LAMP2A-Cathepsin A interaction, and enhanced LAMP2A stability; tmem106bb KO or TMEM106B knockdown caused LAMP2A degradation and impairment of chaperone-mediated autophagy (CMA). Knockdown of lamp2a caused similar phenotypes to that in tmem106bb-/- zebrafish, and overexpression of lamp2a rescued the impaired phenotypes of HSPCs in tmem106bb-/- embryos. These results uncover a novel molecular mechanism for the maintenance of HSPC proliferation and differentiation through stabilizing LAMP2A via TMEM106B-LAMP2A interaction.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Hematopoyéticas , Proteína 2 de la Membrana Asociada a los Lisosomas , Proteínas de la Membrana , Pez Cebra , Animales , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Lisosomas/metabolismo , Humanos , Hematopoyesis/fisiología
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(4): 595-602, 2024 Apr 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39019788

RESUMEN

OBJECTIVES: Interruption of aortic arch (IAA) is a rare congenital heart disease. This study aims to investigate echocardiographic features and pathological ultrastructural characteristics of fetal IAA and to further analyze its pathological evolution. METHODS: A retrospective analysis was conducted on prenatal echocardiographic, post-surgical, or autopsy findings of fetuses prenatally diagnosed with IAA. Prenatal echocardiographic tracking was used to observe the internal diameters and Z-scores of different segments of the aortic arch and the changes in the narrowed section. These observations were combined with autopsy and pathological findings to explore the potential intrauterine evolution of IAA and its cytological basis. RESULTS: The study included 34 fetuses with IAA, with 3, 3, and 28 fetuses prenatally diagnosed with aortic arch dysplasia (AAD), coarctation of aorta (CoA), and IAA, respectively. The 3 AAD and 3 CoA fetuses chose termination of pregnancy 1 to 2 weeks after prenatal ultrasound diagnosis, and autopsy confirmed IAA. Among the 28 fetuses prenatally diagnosed with IAA, 6 cases of CoA progressively worsened, eventually evolving into type A IAA as observed through echocardiographic follow-up. The remaining 22 cases were diagnosed as IAA on the first prenatal ultrasound. Postnatal surgery corrected 3 cases, while 27 cases opted for pregnancy termination, and 4 cases resulted in intrauterine death. Echocardiographic features of the fetal IAA included a significantly smaller left ventricle compared with the right or negligible difference on the four-chamber view, a significantly smaller aorta than the pulmonary artery on the three-vessel view, and a lack of connection between the aorta and the descending aorta on the three-vessel-trachea and aortic arch views. The aortic arch appears less curved and more rigid, losing the normal "V" shape between the aorta, ductus arteriosus, and descending aorta. Color Doppler ultrasound showed no continuous blood flow signal at the interruption site, with reversed blood flow visible in the ductus arteriosus. Transmission electron microscopy of 7 IAA fetuses revealed numerous disorganized smooth muscle cells between the elastic membranes near the aortic arch interruption site, significantly increased in number compared with the proximal ascending aorta. The elastic membranes were thicker and more twisted near the interruption site. The interruption area lacked normal endothelial cells and lumen, with only remnants of necrotic endothelial cells, disorganized short and thick elastic membranes, and randomly arranged smooth muscle cells. CONCLUSIONS: Prenatal echocardiography is the primary diagnostic tool for fetal IAA. Post-surgical follow-up and autopsy help identify complications and disease characteristics, enhancing diagnostic accuracy. Some fetal IAA may evolve from AAD or CoA, with potential pathogenesis related to ischemia, hypoxia, and migration of ductal constrictive components.


Asunto(s)
Aorta Torácica , Ultrasonografía Prenatal , Humanos , Femenino , Aorta Torácica/embriología , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/patología , Embarazo , Estudios Retrospectivos , Ecocardiografía , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/embriología , Coartación Aórtica/diagnóstico por imagen , Coartación Aórtica/patología , Coartación Aórtica/embriología , Adulto
3.
Eur J Med Chem ; 270: 116358, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574638

RESUMEN

The fatty acid-binding protein 1 (FABP1) is a fatty acid transporter protein that is considered as an emerging target for metabolic diseases. Despite forceful evidence that the inhibition of FABP1 is essential for ameliorating NASH, pharmacological control and validation of FABP1 are hindered by a lack of relevant inhibitors as pharmacological tool. Therefore, the development of effective FABP1 inhibitors is a current focus of research. Herein, we firstly reported the comprehensive structure-activity relationship (SAR) study of novel FABP1 inhibitors derived from high throughput screening of our in-house library, which resulting in the identification of the optimal compound 44 (IC50 = 4.46 ± 0.54 µM). Molecular docking studies revealed that 44 forms stable hydrogen bonds with amino acids around the active pocket of FABP1. Moreover, 44 alleviated the typical histological features of fatty liver in NASH mice, including steatosis, lobular inflammation, ballooning and fibrosis. Additionally, 44 has been demonstrated to have lipid metabolism regulating, anti-oxidative stress and hepatoprotective properties. This study might be provided a promising insight into the field of NASH and inspiration for the development of FABP1 inhibitors.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Metabolismo de los Lípidos , Fibrosis , Proteínas de Unión a Ácidos Grasos/metabolismo , Hígado/metabolismo
4.
Bioorg Chem ; 143: 107071, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199141

RESUMEN

Farnesoid X receptor (FXR) was considered as a promising drug target in the treatment of cholestasis, drug-induced liver injury, and non-alcoholic steatohepatitis (NASH). However, the existing FXR agonists have shown different degrees of side effects in clinical trials without clear interpretation. MET-409 in clinical phase Ⅲ, has been proven significantly fewer side effects than that of other FXR agonists. This may be due to the completely different structure of FEX and other non-steroidal FXR agonists. Herein, the structure-based drug design was carried out based on FEX, and the more active FXR agonist LH10 (FEX EC50 = 0,3 µM; LH10 EC50 = 0.14 µM)) was screened out by the comprehensive SAR studies. Furthermore, LH10 exhibited robust hepatoprotective activity on the ANIT-induced cholestatic model and APAP-induced acute liver injury model, which was even better than positive control OCA. In the nonalcoholic steatohepatitis (NASH) model, LH10 significantly improved the pathological characteristics of NASH by regulating several major pathways including lipid metabolism, inflammation, oxidative stress, and fibrosis. With the above attractive results, LH10 is worthy of further evaluation as a novel agent for the treatment of liver disorders.


Asunto(s)
Colestasis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Citoplasmáticos y Nucleares , Hígado/metabolismo , Derivados del Benceno/farmacología , Colestasis/metabolismo , Colestasis/patología
5.
Bioorg Med Chem ; 96: 117533, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976807

RESUMEN

Metabolic syndrome is a complex disease with diverse symptoms, but current pharmacological interventions have limited efficacy. Indeglitazar, a pan-agonist targeting the three-peroxisome proliferator activated receptors (PPAR), exhibits significant therapeutic effects on both diabetic and fatty liver animal models. However, its short half-life limits the in vivo efficacy, which might be attributed to the ß-oxidation of indolepropionic acid at Indeglitazar. To overcome this metabolic instability, two deuterium atoms were introduced to the α-position of indolepropionic acid to block the ß-oxidation. In this study, several deuterated derivatives were found to sustain PPARs activity and extend the half-life of liver microsomes. In oral glucose tolerance tests, I-1 exhibited the strongest glucose-lowering effect on ob/ob mice in this series. In db/db mice, I-1 reduced lipid levels, liver steatosis and promoted UCP1 expression in white adipose tissue. Mechanistic studies further revealed that I-1 exerts stronger effects than Indeglitazar on the regulation of genes related to lipid metabolism, mitochondrial function, and oxidative stress. Furthermore, I-1 significantly reduced liver steatosis, hepatocellular ballooning, inflammation, and fibrosis in NASH model induced by HFD + CCl4, and even exerted better therapeutic effect than that of Indeglitazar. With the above attractive efficacy, deuterated derivative I-1 is considered as a promising treatment for metabolic syndrome.


Asunto(s)
Diabetes Mellitus , Hígado Graso , Síndrome Metabólico , Ratones , Animales , PPAR alfa/agonistas , Síndrome Metabólico/metabolismo , Diabetes Mellitus/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hipoglucemiantes/farmacología , Hígado/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 43(12): 2348-2368, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37881938

RESUMEN

BACKGROUND: Hemangioblasts are mesoderm-derived multipotent stem cells for differentiation of all hematopoietic and endothelial cells in the circulation system. However, the underlying molecular mechanism is poorly understood. METHODS: CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (type II CRISPR RNA-guided endonuclease) editing was used to develop aggf1-/- and emp2-/- knockout zebra fish. Whole-mount in situ hybridization and transgenic Tg(gata1-EGFP [enhanced green fluorescent protein]), Tg(mpx-EGFP), Tg(rag2-DsRed [discosoma sp. red fluorescent protein]), Tg(cd41-EGFP), Tg(kdrl-EGFP), and Tg(aggf1-/-;kdrl-EGFP) zebra fish were used to examine specification of hemangioblasts and hematopoietic stem and progenitor cells (HSPCs), hematopoiesis, and vascular development. Quantitative real-time polymerase chain reaction and Western blot analyses were used for expression analysis of genes and proteins. RESULTS: Knockout of aggf1 impaired specification of hemangioblasts and HSPCs, hematopoiesis, and vascular development in zebra fish. Expression of npas4l/cloche-the presumed earliest marker for hemangioblast specification-was significantly reduced in aggf1-/- embryos and increased by overexpression of aggf1 in embryos. Overexpression of npas4l rescued the impaired specification of hemangioblasts and HSPCs and development of hematopoiesis and intersegmental vessels in aggf1-/- embryos, placing aggf1 upstream of npas4l in hemangioblast specification. To identify the underlying molecular mechanism, we identified emp2 as a key aggf1 downstream gene. Similar to aggf1, emp2 knockout impaired the specification of hemangioblasts and HSPCs, hematopoiesis, and angiogenesis by increasing the phosphorylation of ERK1/2 (extracellular signal-regulated protein kinase 1/2). Mechanistic studies showed that aggf1 knockdown and knockout significantly decreased the phosphorylated levels of mTOR (mammalian target of rapamycin) and p70 S6K (ribosomal protein S6 kinase), resulting in reduced protein synthesis of Emp2 (epithelial membrane protein 2), whereas mTOR activator MHY1485 (4,6-dimorpholino-N-(4-nitrophenyl)-1,3,5-triazin-2-amine) rescued the impaired specification of hemangioblasts and HSPCs and development of hematopoiesis and intersegmental vessels and reduced Emp2 expression induced by aggf1 knockdown. CONCLUSIONS: These results indicate that aggf1 acts at the top of npas4l and becomes the earliest marker during specification of hemangioblasts. Our data identify a novel signaling axis of Aggf1 (angiogenic factor with G-patch and FHA domain 1)-mTOR-S6K-ERK1/2 for specification of hemangioblasts and HSPCs, primitive and definitive hematopoiesis, and vascular development. Our findings provide important insights into specification of hemangioblasts and HSPCs essential for the development of the circulation system.


Asunto(s)
Hemangioblastos , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Hemangioblastos/metabolismo , Hematopoyesis/genética , Mamíferos , Serina-Treonina Quinasas TOR/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
7.
Biochem Pharmacol ; 215: 115742, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567318

RESUMEN

Human carboxylesterase 2 (hCES2) is an enzyme that metabolizes irinotecan to SN-38, a toxic metabolite considered a significant source of side effects (lethal delayed diarrhea). The hCES2 inhibitors could block the hydrolysis of irinotecan in the intestine and thus reduce the exposure of intestinal SN-38, which may alleviate irinotecan-associated diarrhea. However, existing hCES2 inhibitors (except loperamide) are not used in clinical applications due to lack of validity or acceptable safety. Therefore, developing more effective and safer drugs for treating delayed diarrhea is urgently needed. This study identified a lead compound 1 with a novel scaffold by high-throughput screening in our in-house library. After a comprehensive structure-activity relationship study, the optimal compound 24 was discovered as an efficient and highly selective hCES2 inhibitor (hCES2: IC50 = 6.72 µM; hCES1: IC50 > 100 µM). Further enzyme kinetics study indicated that compound 24 is a reversible inhibitor of hCES2 with competitive inhibition mode (Ki = 6.28 µM). The cell experiments showed that compound 24 could reduce the level of hCES2 in living cells (IC50 = 6.54 µM). The modeling study suggested that compound 24 fitted very well with the binding pocket of hCES2 by forming multiple interactions. Notably, compound 24 can effectively treat irinotecan-induced delayed diarrhea and DSS-induced ulcerative colitis, and its safety has also been verified in subtoxic studies. Based on the overall pharmacological and preliminary safety profiles, compound 24 is worthy of further evaluation as a novel agent for irinotecan-induced delayed diarrhea.


Asunto(s)
Colitis Ulcerosa , Humanos , Irinotecán/efectos adversos , Colitis Ulcerosa/tratamiento farmacológico , Carboxilesterasa/metabolismo , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Intestinos , Relación Estructura-Actividad , Camptotecina/uso terapéutico
8.
Eur J Med Chem ; 258: 115614, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37413879

RESUMEN

Farnesoid X receptor (FXR) is considered as a promising target for the treatment of NASH. Although many non-steroidal FXR agonists have been reported, the structure types are quite scarce and mainly limited to the isoxazole scaffold derived from GW4064. Therefore, it is crucial to expand the structure types of FXR agonist to explore wider chemical space. In this study, the structure-based scaffold hopping strategy was performed by hybrid FXR agonist 1 and T0901317, which resulted in the discovery of sulfonamide FXR agonist 19. Molecular docking study reasonably explained the SAR in this series, and compound 19 fitted well with the binding pocket in a similar mode to the co-crystal ligand. In addition, compound 19 exhibited considerable selectivity against other nuclear receptors. In NASH model, compound 19 alleviated the typical histological features of fatty liver, including steatosis, lobular inflammation, ballooning, and fibrosis. Moreover, compound 19 exhibited acceptable safety profiles with no acute toxicity to major organ. These results suggested that the novel sulfonamide FXR agonist 19 might be a promising agent for the treatment of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Receptores Citoplasmáticos y Nucleares , Sulfonamidas/farmacología
9.
Bioorg Chem ; 138: 106625, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300962

RESUMEN

Human carboxylesterase 2 (hCES2A), one of the most important serine hydrolases distributed in the small intestine and colon, plays a crucial role in the hydrolysis of various prodrugs and esters. Accumulating evidence has demonstrated that the inhibition of hCES2A effectively alleviate the side effects induced by some hCES2A-substrate drugs, including delayed diarrhea caused by the anticancer drug irinotecan. Nonetheless, there is a scarcity of selective and effective inhibitors that are suitable for irinotecan-induced delayed diarrhea. Following screening of the in-house library, the lead compound 01 was identified with potent inhibition on hCES2A, which was further optimized to obtain LK-44 with potent inhibitory activity (IC50 = 5.02 ± 0.67 µM) and high selectivity on hCES2A. Molecular docking and molecular dynamics simulations indicated that LK-44 can formed stable hydrogen bonds with amino acids surrounding the active cavity of hCES2A. The results of inhibition kinetics studies unveiled that LK-44 inhibited hCES2A-mediated FD hydrolysis in a mixed inhibition manner, with a Ki value of 5.28 µM. Notably, LK-44 exhibited low toxicity towards HepG2 cells according to the MTT assay. Importantly, in vivo studies showed that LK-44 significantly reduced the side effects of irinotecan-induced diarrhea. These findings suggested that LK-44 is a potent inhibitor of hCES2A with high selectivity against hCES1A, which has potential as a lead compound for the development of more effective hCES2A inhibitors to mitigate irinotecan-induced delayed diarrhea.


Asunto(s)
Diarrea , Inhibidores Enzimáticos , Humanos , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Irinotecán/efectos adversos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
10.
J Med Chem ; 66(9): 6082-6104, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37079895

RESUMEN

The prevalence of nonalcoholic steatohepatitis (NASH) is increasing rapidly worldwide, and NASH has become a serious problem for human health. Recently, the selective activation of the intestinal farnesoid X receptor (FXR) was considered as a more promising strategy for the treatment of NASH with lesser side effects due to reduced systemic exposure. Moreover, the inhibition of intestinal fatty acid binding protein 1 (FABP1) alleviated obesity and NASH by reducing dietary fatty acid uptake. In this study, the first-in-class intestinal restricted FXR and FABP1 dual-target modulator ZLY28 was discovered by comprehensive multiparameter optimization studies. The reduced systemic exposure of ZLY28 might provide better safety by decreasing the on- and off-target side effects in vivo. In NASH mice, ZLY28 exerted robust anti-NASH effects by inhibiting FABP1 and activating the FXR-FGF15 signaling pathway in the ileum. With the above attractive efficacy and preliminary safety profiles, ZLY28 is worthy of further evaluation as a novel anti-NASH agent.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Proteínas de Unión a Ácidos Grasos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad , Receptores Citoplasmáticos y Nucleares/metabolismo
11.
Eur J Med Chem ; 245(Pt 1): 114883, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36343410

RESUMEN

Type 2 diabetes mellitus (T2DM) is a lifelong disease that requires long-term medication to control glucose levels, and thereby long-acting drug has been clinically needed for improving medical adherence. The free fatty acid receptor 1 (FFA1) was considered as a promising target for several diseases, such as T2DM, pain and fatty liver. However, no once-weekly FFA1 agonist has been reported until now. Herein, we report the successful discovery of ZLY50, the first once-weekly FFA1 agonist with a completely new chemotype, highly agonistic activity and selectivity on FFA1. Moreover, ZLY50 has enough brain exposure to activate FFA1 in brain, and it is the first orally available FFA1 agonist with analgesic activity. Notably, the long-term anti-diabetic and anti-fatty liver effects of ZLY50 (once-weekly) were better than those of HWL-088 (once-daily), a highly potent FFA1 agonist with far stronger glucose-lowering effect than Phase 3 clinical candidate TAK-875. Further mechanism studies suggested that ZLY50 alleviates fatty liver by regulating the expressions of genes related to lipid metabolism, mitochondrial function, and oxidative stress in liver.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Receptores Acoplados a Proteínas G , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Receptores Acoplados a Proteínas G/agonistas , Glucemia/efectos de los fármacos , Descubrimiento de Drogas , Preparaciones de Acción Retardada
12.
Bioorg Med Chem ; 75: 117073, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36347120

RESUMEN

With increased unhealthy dietary patterns and a sedentary lifestyle, the prevalence of hyperuricemia is growing rapidly, placing a tremendous burden on the public health system. Persistent hyperuricemia in extreme cases induces gout, gouty arthritis, and other metabolic diseases. Benzbromarone is a potent human urate transporter 1 (URAT1) inhibitor that is widely used as a uric acid-lowering drug. Recent studies indicated that benzbromarone can also activate farnesoid X receptor (FXR), whereas its agonistic activity on FXR is rather poor. Mounting evidence suggested that the etiology of gout is directly related to NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasomes, and FXR suppresses the expression of NLRP3 in various ways. Therefore, the dual URAT1 inhibitor and FXR agonist may exert synergistic effects on decreasing uric acid (UA) levels and inhibiting inflammation. To obtain a better dual URAT1 inhibitor and FXR agonist, we performed the structure-based drug design (SBDD) strategy to improve the FXR activation of benzbromarone by forming strong interactions with ARG331 in FXR binding pocket. All of these efforts lead to the identification of compound 4, which exerts better activity on FXR and uric acid-lowering effect than benzbromarone.

13.
Bioorg Med Chem ; 75: 117096, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36395681

RESUMEN

Fibrosis, a chronic disease with high morbidity and mortality, is mainly characterized by excessive accumulation of extracellular matrix (ECM). At present, pathogenesis of fibrosis is incompletely understood, and there is an urgent need to develop safe and effective drugs. In this study, we designed and synthesized a series of novel small-molecule compounds through structural modification and fragment hybridization. Among them, a potential anti-fibrosis drug compd.1 was founded to be able to dose-dependently down-regulate ACTA2 and CTGF mRNA levels in human hepatic stellate cells (LX-2) treated with TGF-ß. In addition, compd.1 significantly improved the bridging fibrosis and collagen content in the CCl4-induced liver fibrosis mice model. Moreover, compd.1 reduced lung inflammation and fibrotic area in bleomycin-induced pulmonary fibrosis mice model. These findings suggested that compd.1 is a promising candidate for further anti-fibrosis researches, and extended chemical space might help us to explore better anti-fibrosis drug.

14.
FASEB J ; 36(6): e22366, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35608889

RESUMEN

AGGF1 is an angiogenic factor with G-Patch and FHA domains 1 described by our group. Gain-of-function mutations in AGGF1 cause Klippel-Trenaunay syndrome, whereas somatic loss-of-function mutations cause cancer. Paraspeckles are small membraneless subnuclear structures with a diameter of 0.5-1 µm, and composed of lncRNA NEAT1 as the scaffold and three core RNA-binding proteins NONO, PSPC1, and PSF. Here, we show that AGGF1 is a key regulatory and structural component of paraspeckles that induces paraspeckle formation, forms an outside rim of paraspeckles, wraps around the NONO/PSF/PSPC1/NEAT1 core, and regulates the size and number of paraspeckles. AGGF1-paraspeckles are larger (>1 µm) than conventional paraspeckles. RNA-FISH in combination with immunostaining shows that AGGF1, NONO, and NEAT1_2 co-localize in 20.58% of NEAT1_2-positive paraspeckles. Mechanistically, AGGF1 interacts with NONO, PSF, and HNRNPK, and upregulates NEAT1_2, a longer, 23 kb NEAT1 transcript with a key role in regulation of paraspeckle size and number. RNA-immunoprecipitation shows that AGGF1 interacts with NEAT1, which may be another possible mechanism underlying the formation of AGGF1-paraspeckles. NEAT1_2 knockdown reduces the number and size of AGGF1-paraspeckles. Functionally, AGGF1 regulates alternative RNA splicing as it decreases the exon skipping/inclusion ratio in a CD44 model. AGGF1 is also localized in some nuclear foci without NEAT1 or NONO, suggesting that AGGF1 is an important liquid-liquid phase separation (LLPS) driver for other types of AGGF1-positive nuclear condensates (referred to as AGGF1-bodies). Our results identify a special type of AGGF1-coated paraspeckles and provide important insights into the formation, structure, and function of paraspeckles.


Asunto(s)
Paraspeckles , ARN Largo no Codificante , Núcleo Celular/metabolismo , Dominios Proteicos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
15.
Emerg Infect Dis ; 27(9): 2288-2293, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34423766

RESUMEN

We estimated the symptomatic, PCR-confirmed secondary attack rate (SAR) for 2,382 close contacts of 476 symptomatic persons with coronavirus disease in Yichang, Hubei Province, China, identified during January 23-February 25, 2020. The SAR among all close contacts was 6.5%; among close contacts who lived with an index case-patient, the SAR was 10.8%; among close-contact spouses of index case-patients, the SAR was 15.9%. The SAR varied by close contact age, from 3.0% for those <18 years of age to 12.5% for those >60 years of age. Multilevel logistic regression showed that factors significantly associated with increased SAR were living together, being a spouse, and being >60 years of age. Multilevel regression did not support SAR differing significantly by whether the most recent contact occurred before or after the index case-patient's onset of illness (p = 0.66). The relatively high SAR for coronavirus disease suggests relatively high virus transmissibility.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adolescente , Niño , China/epidemiología , Humanos , Incidencia , Modelos Logísticos
16.
FASEB J ; 35(5): e21465, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33788967

RESUMEN

N6 -methyladenosine (m6A) methylation is the most prevalent RNA modification, and it emerges as an important regulatory mechanism of gene expression involved in many cellular and biological processes. However, the role of m6 A methylation in vascular development is not clear. The m6 A RNA methylation is regulated by dynamic interplay among methyltransferases, binding proteins, and demethylases. Mettl3 is a member of the mettl3-mettl14 methyltransferase complex, referred to as writers that catalyze m6A RNA methylation. Here, we used CRISPR-Cas9 genome editing to develop two lines of knockout (KO) zebrafish for mettl3. Heterozygous mettl3+/- KO embryos show defective vascular development, which is directly visible in fli-EGFP and flk-EGFP zebrafish. Alkaline phosphatase staining and whole mount in situ hybridization with cdh5, and flk markers demonstrated defective development of intersegmental vessels (ISVs), subintestinal vessels (SIVs), interconnecting vessels (ICVs) and dorsal longitudinal anastomotic vessels (DLAV) in both heterozygous mettl3+/- and homozygous mettl3-/- KO zebrafish embryos. Similar phenotypes were observed in zebrafish embryos with morpholino knockdown (KD) of mettl3; however, the vascular defects were rescued fully by overexpression of constitutively active AKT1. KD of METTL3 in human endothelial cells inhibited cell proliferation, migration, and capillary tube formation. Mechanistically, mettl3 KO and KD significantly reduced the levels of m6 A RNA methylation, and AKT phosphorylation (S473) by an increase in the expression of phosphatase enzyme PHLPP2 and reduction in the phosphorylation of mTOR (S2481), a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases. These data suggest that m6 A RNA methylation regulates vascular development via PHLPP2/mTOR-AKT signaling.


Asunto(s)
Adenosina/análogos & derivados , Embrión no Mamífero/citología , Metiltransferasas/metabolismo , Neovascularización Fisiológica , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenosina/química , Animales , Embrión no Mamífero/metabolismo , Metilación , Metiltransferasas/genética , Fosfoproteínas Fosfatasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Acta Physiol (Oxf) ; 231(3): e13567, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33032360

RESUMEN

AIMS: MOG1 is a small protein that can bind to small GTPase RAN and regulate transport of RNA and proteins between the cytoplasm and nucleus. However, the in vivo physiological role of mog1 in the heart needs to be fully defined. METHODS: Mog1 knockout zebrafish was generated by TALEN. Echocardiography, histological analysis, and electrocardiograms were used to examine cardiac structure and function. RNA sequencing and real-time RT-PCR were used to elucidate the molecular mechanism and to analyse the gene expression. Isoproterenol was used to induce cardiac hypertrophy. Whole-mount in situ hybridization was used to observe cardiac morphogenesis. RESULTS: Mog1 knockout zebrafish developed cardiac hypertrophy and heart failure (enlarged pericardium, increased nppa and nppb expression and ventricular wall thickness, and reduced ejection fraction), which was aggravated by isoproterenol. RNAseq and KEGG pathway analyses revealed the effect of mog1 knockout on the pathways of cardiac hypertrophy, dilatation and contraction. Mechanistic studies revealed that mog1 knockout decreased expression of tbx5, which reduced expression of cryab and hspb2, resulting in cardiac hypertrophy and heart failure. Overexpression of cryab, hspb2 and tbx5 rescued the cardiac oedema phenotype of mog1 KO zebrafish. Telemetry electrocardiogram monitoring showed QRS and QTc prolongation and a reduced heart rate in mog1 knockout zebrafish, which was associated with reduced scn1b expression. Moreover, mog1 knockout resulted in abnormal cardiac looping during embryogenesis because of the reduced expression of nkx2.5, gata4 and hand2. CONCLUSION: Our data identified an important molecular determinant for cardiac hypertrophy and heart failure, and rhythm maintenance of the heart.


Asunto(s)
Insuficiencia Cardíaca , Pez Cebra , Animales , Cardiomegalia/genética , Corazón , Insuficiencia Cardíaca/genética , Transducción de Señal
18.
Theranostics ; 10(12): 5613-5622, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373235

RESUMEN

Rationale: Some patients with coronavirus disease 2019 (COVID-19) rapidly develop respiratory failure or even die, underscoring the need for early identification of patients at elevated risk of severe illness. This study aims to quantify pneumonia lesions by computed tomography (CT) in the early days to predict progression to severe illness in a cohort of COVID-19 patients. Methods: This retrospective cohort study included confirmed COVID-19 patients. Three quantitative CT features of pneumonia lesions were automatically calculated using artificial intelligence algorithms, representing the percentages of ground-glass opacity volume (PGV), semi-consolidation volume (PSV), and consolidation volume (PCV) in both lungs. CT features, acute physiology and chronic health evaluation II (APACHE-II) score, neutrophil-to-lymphocyte ratio (NLR), and d-dimer, on day 0 (hospital admission) and day 4, were collected to predict the occurrence of severe illness within a 28-day follow-up using both logistic regression and Cox proportional hazard models. Results: We included 134 patients, of whom 19 (14.2%) developed any severe illness. CT features on day 0 and day 4, as well as their changes from day 0 to day 4, showed predictive capability. Changes in CT features from day 0 to day 4 performed the best in the prediction (area under the receiver operating characteristic curve = 0.93, 95% confidence interval [CI] 0.87~0.99; C-index=0.88, 95% CI 0.81~0.95). The hazard ratios of PGV and PCV were 1.39 (95% CI 1.05~1.84, P=0.023) and 1.67 (95% CI 1.17~2.38, P=0.005), respectively. CT features, adjusted for age and gender, on day 4 and in terms of changes from day 0 to day 4 outperformed APACHE-II, NLR, and d-dimer. Conclusions: CT quantification of pneumonia lesions can early and non-invasively predict the progression to severe illness, providing a promising prognostic indicator for clinical management of COVID-19.


Asunto(s)
Infecciones por Coronavirus/diagnóstico por imagen , Infecciones por Coronavirus/patología , Pulmón/patología , Neumonía Viral/diagnóstico por imagen , Neumonía Viral/patología , Adulto , Anciano , Algoritmos , Inteligencia Artificial , Betacoronavirus , COVID-19 , China , Progresión de la Enfermedad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Pandemias , Pronóstico , Estudios Retrospectivos , SARS-CoV-2 , Tomografía Computarizada por Rayos X
19.
FEBS J ; 285(21): 4071-4081, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30188605

RESUMEN

The phlda3 gene encodes a small, 127-amino acid protein with only a PH domain, and is involved in tumor suppression, proliferation of islet ß-cells, insulin secretion, glucose tolerance, and liver injury. However, the role of phlda3 in vascular development is unknown. Here, we show that phlda3 overexpression decreases the expression levels of hemangioblast markers scl, fli1, and etsrp and intersegmental vessel (ISV) markers flk1 and cdh5, and disrupts ISV development in tg(flk1:GFP) and tg(fli1:GFP) zebrafish. Moreover, phlda3 overexpression inhibits the activation of protein kinase B (AKT) in zebrafish embryos, and the developmental defects of ISVs by phlda3 overexpression were reversed by the expression of a constitutively active form of AKT. These data suggest that phlda3 is a negative regulator of hemangioblast specification and ISV development via AKT signaling.


Asunto(s)
Vasos Sanguíneos/embriología , Embrión no Mamífero/patología , Hemangioblastos/patología , Neovascularización Patológica , Proteínas Nucleares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hemangioblastos/metabolismo , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
20.
FASEB J ; 32(1): 183-194, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28877957

RESUMEN

A genomic variant in the human ADTRP [androgen-dependent tissue factor (TF) pathway inhibitor (TFPI) regulating protein] gene increases the risk of coronary artery disease, the leading cause of death worldwide. TFPI is the TF pathway inhibitor that is involved in coagulation. Here, we report that adtrp and tfpi form a regulatory axis that specifies primitive myelopoiesis and definitive hematopoiesis, but not primitive erythropoiesis or vasculogenesis. In zebrafish, there are 2 paralogues for adtrp (i.e., adtrp1 and adtrp2). Knockdown of adtrp1 expression inhibits the specification of hemangioblasts, as shown by decreased expression of the hemangioblast markers, etsrp, fli1a, and scl; blocks primitive hematopoiesis, as shown by decreased expression of pu.1, mpo, and l-plastin; and disrupts the specification of hematopoietic stem cells (definitive hematopoiesis), as shown by decreased expression of runx1 and c-myb However, adtrp1 knockdown does not affect erythropoiesis during primitive hematopoiesis (no effect on gata1 or h-bae1) or vasculogenesis (no effect on kdrl, ephb2a, notch3, dab2, or flt4). Knockdown of adtrp2 expression does not have apparent effects on all markers tested. Knockdown of adtrp1 reduced the expression of tfpi, and hematopoietic defects in adtrp1 morphants were rescued by tfpi overexpression. These data suggest that the regulation of tfpi expression is one potential mechanism by which adtrp1 regulates primitive myelopoiesis and definitive hematopoiesis.-Wang, L., Wang, X., Wang, L., Yousaf, M., Li, J., Zuo, M., Yang, Z., Gou, D., Bao, B., Li, L., Xiang, N., Jia, H., Xu, C., Chen, Q., Wang, Q. K. Identification of a new adtrp1-tfpi regulatory axis for the specification of primitive myelopoiesis and definitive hematopoiesis.


Asunto(s)
Hematopoyesis/genética , Mielopoyesis/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hemangioblastos/citología , Hemangioblastos/metabolismo , Humanos , Lipoproteínas/antagonistas & inhibidores , Lipoproteínas/genética , Lipoproteínas/metabolismo , Neovascularización Fisiológica/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA