Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(12): e2305778, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37948356

RESUMEN

The fast development of Internet of Things and the rapid advent of next-generation versatile wearable electronics require cost-effective and highly-efficient electroactive materials for flexible electrochemical energy storage devices. Among various electroactive materials, binder-free nanostructured arrays have attracted widespread attention. Featured with growing on a conductive and flexible substrate without using inactive and insulating binders, binder-free 3D nanoarray electrodes facilitate fast electron/ion transportation and rapid reaction kinetics with more exposed active sites, maintain structure integrity of electrodes even under bending or twisted conditions, readily release generated joule heat during charge/discharge cycles and achieve enhanced gravimetric capacity of the whole device. Binder-free metal-organic framework (MOF) nanoarrays and/or MOF-derived nanoarrays with high surface area and unique porous structure have emerged with great potential in energy storage field and been extensively exploited in recent years. In this review, common substrates used for binder-free nanoarrays are compared and discussed. Various MOF-based and MOF-derived nanoarrays, including metal oxides, sulfides, selenides, nitrides, phosphides and nitrogen-doped carbons, are surveyed and their electrochemical performance along with their applications in flexible energy storage are analyzed and overviewed. In addition, key technical issues and outlooks on future development of MOF-based and MOF-derived nanoarrays toward flexible energy storage are also offered.

2.
ACS Eng Au ; 3(6): 461-476, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38144680

RESUMEN

Two-dimensional (2D) nanomaterial-MoS2 (molybdenum disulfide) has gained interest among researchers, owing to its exceptional mechanical, biological, and physiochemical properties. This paper reports on the removal of organic dyes and an emerging contaminant, Ciprofloxacin, by a 2D MoS2 nanoflower as an adsorbent. The material was prepared by a green hydrothermal technique, and its high Brunauer-Emmett-Teller-specific area of 185.541m2/g contributed to the removal of 96% rhodamine-B dye and 85% Ciprofloxacin. Various characterizations, such as X-ray diffraction, scanning electron microscopy linked with energy-dispersive spectroscopy, and transmission electron microscopy, revealed the nanoflower structure with good crystallinity. The feasibility and efficacy of 2D MoS2 nanoflower as a promising adsorbent candidate for the removal of emerging pollutants was confirmed in-depth in batch investigations, such as the effects of adsorption time, MoS2 dosages, solution pH, and temperature. The adsorption mechanism was further investigated based on thermodynamic calculations, adsorption kinetics, and isotherm modeling. The results confirmed the exothermic nature of the enthalpy-driven adsorption as well as the fast kinetics and physisorption-controlled adsorption process. The recyclability potential of 2D MoS2 exceeds four regeneration recycles. MoS2 nanoflower has been shown to be an effective organic pollutant removal adsorbent in water treatment.

3.
Nanoscale ; 14(12): 4726-4739, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35266942

RESUMEN

The increased call for carbon neutrality by 2050 makes it compelling to develop emission-free alternative energy sources. Green hydrogen produced from water electrolyzers using renewable electricity is of great importance, and the development of efficient transition-metal-based materials for hydrogen production by electrolysis is highly desirable. In this report, a new approach to produce defect-rich and ultra-fine bimetallic Co-Mo sulfides/carbon composites from polyoxometalates@ZIF-67@polydopamine nanocubes via carbonization/sulfurization, which are highly active for hydrogen and oxygen evolution reactions (HER and OER), have been successfully developed. The coating of polydopamine (PDA) on the surface of the acid-sensitive ZIF-67 cubes can prevent the over-dissociation of ZIF-67 caused by the encapsulated phosphomolybdic acid (PMA) etching through PDA chelating with the PMA molecules. Meanwhile, the partially dissociated Co2+ from ZIF-67 can be captured by the coated PDA via chelation, resulting in more evenly dispersed active sites throughout the heterogeneous composite after pyrolysis. The optimized bimetallic composite CoMoS-600 exhibits a prominent improvement in HER (with an overpotential of -0.235 V vs. RHE at a current density of 10 mA cm-2) and OER performance (with an overpotential of 0.350 V vs. RHE at a current density of 10 mA cm-2), due to the synergistic effect of ultra-fine defect-rich Co-Mo-S nanoparticle active sites and N,S-codoped porous carbons in the composites. Moreover, this synthesis approach can be readily expanded to other acidic polyoxometalates to produce HER and OER active bimetallic Co-W sulfide/carbon composites by replacing PMA with phosphotungstic acid. This new synthesis strategy to modify acid-sensitive ZIFs with selected compounds offers an alternative approach to develop novel transition metal sulfide/carbon composites for various applications.

4.
Adv Sci (Weinh) ; 8(14): e2100625, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34032017

RESUMEN

Solar energy is a key sustainable energy resource, and materials with optimal properties are essential for efficient solar energy-driven applications in photocatalysis. Metal-organic frameworks (MOFs) are excellent platforms to generate different nanocomposites comprising metals, oxides, chalcogenides, phosphides, or carbides embedded in porous carbon matrix. These MOF derived nanocomposites offer symbiosis of properties like high crystallinities, inherited morphologies, controllable dimensions, and tunable textural properties. Particularly, adjustable energy band positions achieved by in situ tailored self/external doping and controllable surface functionalities make these nanocomposites promising photocatalysts. Despite some progress in this field, fundamental questions remain to be addressed to further understand the relationship between the structures, properties, and photocatalytic performance of nanocomposites. In this review, different synthesis approaches including self-template and external-template methods to produce MOF derived nanocomposites with various dimensions (0D, 1D, 2D, or 3D), morphologies, chemical compositions, energy bandgaps, and surface functionalities are comprehensively summarized and analyzed. The state-of-the-art progress in the applications of MOF derived nanocomposites in photocatalytic water splitting for H2 generation, photodegradation of organic pollutants, and photocatalytic CO2 reduction are systemically reviewed. The relationships between the nanocomposite properties and their photocatalytic performance are highlighted, and the perspectives of MOF derived nanocomposites for photocatalytic applications are also discussed.

5.
Polymers (Basel) ; 12(10)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066184

RESUMEN

The industrial advancement of high-performance technologies directly depends on the thermo-mechanical properties of materials. Here we give an account of a facile approach for the bulk production of a polyethylene terephthalate (PET)/polypropylene (PP)-based nanocomposite blend with Inorganic Fullerene Tungsten Sulfide (IF-WS2) nanofiller using a single extruder. Nanofiller IF-WS2 was produced by the rotary chemical vapor deposition (RCVD) method. Subsequently, IF-WS2 nanoparticles were dispersed in PET and PP in different loadings to access impact and their dispersion behavior in polymer matrices. As-prepared blend nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic differential scanning (DSC), dynamic mechanical analysis (DMA), and X-ray diffraction (XRD). In this work, the tensile strength of the PP/PET matrix with 1% IF-WS2 increased by 31.8%, and the thermal stability of the sample PP/PET matrix with 2% increased by 18 °C. There was an extraordinary decrease in weight loss at elevated temperature for the nanocomposites in TGA analysis, which confirms the role of IF-WS2 on thermal stability versus plain nanocomposites. In addition, this method can also be used for the large-scale production of such materials used in high-temperature environments.

6.
Sci Rep ; 7(1): 11829, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928477

RESUMEN

A versatile Rotary Chemical Vapour Deposition (RCVD) technique for the in-situ synthesis of large scale carbon-coated non-magnetic metal oxide nanoparticles (NPs) is presented, and a controllable coating thickness varying between 1-5 nm has been achieved. The technique has significantly up-scaled the traditional chemical vapour deposition (CVD) production for NPs from mg level to 10 s of grams per batch, with the potential for continuous manufacturing. The resulting smooth and uniform C-coatings sheathing the inner core metal oxide NPs are made of well-crystallised graphitic layers, as confirmed by electron microscopy imaging, electron dispersive spectrum elemental line scan, X-ray powder diffractions and Raman spectroscopy. Using nylon 12 as an example matrix, we further demonstrate that the inclusion of C-coated composite NPs into the matrix improves the thermal conductivity, from 0.205 W∙m-1∙K-1 for neat nylon 12 to 0.305 W∙m-1∙K-1 for a 4 wt% C-coated ZnO composite, in addition to a 27% improvement in tensile strength at 2 wt% addition.

7.
ACS Nano ; 11(8): 8114-8121, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28777543

RESUMEN

Nanocomposites fabricated using the toughest caged inorganic fullerene WS2 (IF-WS2) nanoparticles could offer ultimate protection via absorbing shockwaves; however, if the IF-WS2 nanomaterials really work, how they behave and what they experience within the nanocomposites at the right moment of impact have never been investigated effectively, due to the limitations of existing investigation techniques that are unable to elucidate the true characteristics of high-speed impacts in composites. We first fabricated Al matrix model nanocomposites and then unlocked the exact roles of IF-WS2 in it at the exact moment of impact, at a time resolution that has never been attempted before, using two in situ techniques. We find that the presence of IF-WS2 reduced the impact velocity by over 100 m/s and in pressure by at least 2 GPa against those Al and hexagonal WS2 platelet composites at an impact speed of 1000 m/s. The IF-WS2 composites achieved an intriguing inelastic impact and outperformed other reference composites, all originating from the "balloon effect" by absorbing the shockwave pressures. This study not only provides fundamental understanding for the dynamic performance of composites but also benefits the development of protective nanocomposite engineering.

8.
Faraday Discuss ; 151: 133-41; discussion 199-212, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22455066

RESUMEN

Due to the high hydrogen capacity of LiBH4, various strategies have been investigated to improve the hydrogen release properties of LiBH4. Theoretical calculations suggest that doping LiBH4 with F-/CI- anions may generate lattice substitutions (such as the formation of LiBH3F or LiBH2F2), which will lower the hydrogen release temperature from LiBH4. The effect of addition of F-/Cl-containing dopants (viz. LiBF4, NH4F, LiA1Cl4 and NH4Cl) on the hydrogen release from 2LiBH4:1MgH2 was investigated and LiBF4 was found to be the most effective among the dopants studied. Furthermore, the combined effect of LiBF4 and the catalyst precursor NbF5 was studied on the hydrogen release from 2LiBH4:1MgH2. It was found that the hydrogen release temperature for the LiBH4 and MgH2 components were substantially reduced by 55 degrees C and 112 degrees C respectively by the combined doping and catalytic effect from LiBF4 and NbF5. This sample was partially rehydrogenated under 400 degrees C and 100 bar, and upon cycling the hydrogen release temperature was lowered further for the LiBH4 component but increased for the MgH2 component.

9.
Nanoscale ; 2(5): 639-59, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20648305

RESUMEN

This manuscript reviews key developments in the important and rapidly expanding area of templated porous carbons. The porosity covered ranges from microporous to mesoporous and macroporous carbons. Two modes of templating, using so-called hard and soft templates, are covered. In particular, for hard templating, zeolite templating generates microporous carbons, mesoporous silicates yield mesoporous carbons, while colloidal particles are replicated to large mesoporous and macroporous carbons. Soft-templating, a more recent phenomenon, mainly generates mesoporous carbons. The full range of pore sizes can therefore now be accessed using hard and soft templates to generate highly ordered nanoscale carbons with well-defined and optimised textural properties. The research area has seen rapid and important developments over the last few years, and this review aims to present the more significant advances.


Asunto(s)
Carbono/química , Nanotecnología , Polímeros/química , Porosidad , Dióxido de Silicio/química , Zeolitas/química
10.
J Am Chem Soc ; 129(6): 1673-9, 2007 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-17243684

RESUMEN

We report the synthesis of zeolite-like carbon materials that exhibit well-resolved powder XRD patterns and very high surface area. The zeolite-like carbons are prepared via chemical vapor deposition (CVD) at 800 or 850 degrees C using zeolite beta as solid template and acetonitrile as carbon precursor. The zeolite-like structural ordering of the carbon materials is indicated by powder XRD patterns with at least two well-resolved diffraction peaks and TEM images that reveal well-ordered micropore channels. The carbons possess surface area of up to 3200 m2/g and pore volume of up to 2.41 cm3/g. A significant proportion of the porosity in the carbons (up to 76% and 56% for surface area and pore volume, respectively) is from micropores. Both TEM and nitrogen sorption data indicate that porosity is dominated by pores of size 0.6-0.8 nm. The carbon materials exhibit enhanced (and reversible) hydrogen storage capacity, with measured uptake of up to 6.9 wt % and estimated maximum of 8.33 wt % at -196 degrees C and 20 bar. At 1 bar, hydrogen uptake capacity as high as 2.6 wt % is achieved. Isosteric heat of adsorption of 8.2 kJ/mol indicates a favorable interaction between hydrogen and the surface of the carbons. The hydrogen uptake capacity observed for the zeolite-like carbon materials is among the highest ever reported for carbon (activated carbon, mesoporous carbon, CNTs) or any other (MOFs, zeolites) porous material.

11.
J Phys Chem B ; 110(37): 18424-31, 2006 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16970467

RESUMEN

Carbon materials have been prepared using zeolite 13X or zeolite Y as template and acetonitrile or ethylene as carbon source via chemical vapor deposition (CVD) at 550-1000 degrees C. Materials obtained from acetonitrile at 750-850 degrees C (zeolite 13X) or 750-900 degrees C (zeolite Y) have high surface area (1170-1920 m(2)/g), high pore volume (0.75-1.4 cm(3) g(-1)), and exhibit some structural ordering replicated from the zeolite templates. Templating with zeolite Y generally results in materials with higher surface area. High CVD temperature (> or =900 degrees C) results in low surface area materials that have significant proportions of graphitic carbon and no zeolite-type structural ordering. The nitrogen content of the samples derived from acetonitrile varies between 5 and 8 wt %. When ethylene is used as a carbon precursor, high surface area (800-1300 m(2)/g) materials are only obtained at lower CVD temperature (550-750 degrees C). The ethylene-derived carbons retain some zeolite-type pore channel ordering but also exhibit significant levels of graphitization even at low CVD temperature. In general, the carbon materials retain the particle morphology of the zeolite templates, with solid-core particles obtained at 750-850 degrees C while hollow shells are generated at higher CVD temperature (> or =900 degrees C). We observed hydrogen uptake of up to 4.5 wt % and 45 g H(2)/L (volumetric density) at -196 degrees C and 20 bar for the carbon materials. The hydrogen uptake was found to be dependent on surface area and was therefore influenced by the choice of zeolite template and carbon source. Zeolite Y-templated N-doped carbons had the highest hydrogen uptake capacity. Gravimetric and volumetric methods gave similar uptake capacity at 1 bar (i.e., 1.6 and 2.0 wt % for zeolite 13X and Y-templated N-doped carbons, respectively). Our findings show that zeolite-templated carbons are attractive for hydrogen storage and highlight the potential benefits of functionalization (nitrogen-doping).

12.
Artículo en Inglés | MEDLINE | ID: mdl-16423719

RESUMEN

A novel fibrous catalyst was used to destroy the pollutants in Kodak Non-Silver-Bearing (NSB) photographic processing effluents with high chemical oxygen demand (COD) value. The oxidation activity of the catalyst was evaluated in terms of COD reduction of the effluent. The effects of concentrations of hydrogen peroxide and effluent, amount of catalyst, reaction time and temperature on the COD reduction were studied. In addition, the combination of catalysis with UV treatment on the COD reduction of the effluent was also investigated. Based on the experimental results, room temperature is preferred for the catalytic oxidation of NSB effluent. It was found that COD reduction of the effluent depends on the amount of hydrogen peroxide added to the feed in relation to the mass of catalyst used. Significant COD reduction (up to 52%) is achieved after 4 hours of catalytic treatment. Extending the duration of catalysis up to 24 hours gives further slight decrease in COD value.


Asunto(s)
Residuos Industriales , Oxidantes Fotoquímicos/química , Fotograbar , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/toxicidad , Biodegradación Ambiental , Catálisis , Peróxido de Hidrógeno/química , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Factores de Tiempo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...