Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 42(5): 2213-2222, 2021 May 08.
Artículo en Chino | MEDLINE | ID: mdl-33884790

RESUMEN

Urban water is a significant part of the urban ecosystem. Therefore, a comprehensive evaluation method of the water environment was proposed based on domestic high-resolution images. The relationships between the spectral characteristics and water quality parameters of urban water were analyzed based on sampling in Nanjing, Wuxi, Changzhou, and Yangzhou from 2017 to 2019. An index named the U-FUI (urban Forel-Ule index) suitable for urban water based on GF-2 images was proposed to achieve the classification of urban water on the basis of the international standard chroma conversion model and the Forel-Ule index. Independent verification data showed that the recognition accuracy of the classification model could reach 72%. The results indicated that urban water can be classified into six classes from Ⅰ to Ⅵ, which represent water colors of blue, light green, dark green, yellow, yellowish brown, and dark grey, respectively, according to the U-FUI. Among them, the water quality of U-FUI Ⅰ water is good, but is rarely distributed in urban water. The concentrations of chlorophyll-a in U-FUI Ⅱ-Ⅲ water are higher than those of the other classes; the concentrations of total suspended solids, particularly inorganic suspended solids, of U-FUI Ⅳ-Ⅴ water are higher than those of the other classes; and the water quality of U-FUI Ⅵ water is poor and the water quality parameters are different from those of the other classes. Meanwhile, the method was successfully applied to the GF-2 image of Nanjing on April 9, 2018. The results showed that the urban water in Nanjing is mainly composed of U-FUI Ⅱ-Ⅳ water, whereas the distribution of U-FUI Ⅰ, Ⅴ, and Ⅵ water is lower in the city. The spatial distribution characteristics were consistent with the results of in-situ sampling in the same period.

2.
Huan Jing Ke Xue ; 41(11): 5060-5072, 2020 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-33124249

RESUMEN

Remote sensing monitoring of black-odor water is an important method for understanding the current status of urban water quality, and comprehensively evaluating the effect of urban water environment treatment. A total of 171 samples were collected in Nanjing, Changzhou, Wuxi, and Yangzhou cities and water quality parameters and optical parameters were measured simultaneously. Based on the analysis of the water color and optical characteristics of the black-odor water and non-black-odor water (denoted as general water), a decision tree was constructed to identify the severe, mild black-odor water, and general water as green and yellow water. The results found that:①According to the water color, the water bodies can be divided into six types. Among them, type 1 to 4 water bodies are black-odor water, which are gray black, dark gray, gray, and light gray water, respectively, and type 5 and 6 water bodies are general water, which are green and yellow water, respectively; ②Type 1 water body contains high contents of non-pigmented particulate matter and colored dissolved organic matter(CDOM), however, the absorption of pigmented particulate matter is not dominant. Type 2 and 5 water bodies are dominated by pigmented particulate matter. Type 3, 4, and 6 water bodies are dominated by non-pigmented particulate matter; ③After water color classification, and according to the differences of the reflection spectrums of the six types of water bodies, the difference of black-odorous water index (DBWI), green-red-nir area water index (G-R-NIR AWI), the green band reflectance and the normalized difference black-odorous water index (NDBWI) were used to construct a decision tree to identify the severe, mild black-odor water, and general water; ④The decision tree was applied to the PlanetScope satellite image of Yangzhou City on April 9, 2019, and 10 synchronous sampling points were used for verification. The overall recognition accuracy reached 80.00%, and the K value reached 0.67. The urban water classification model, after water color classification, can be applied to other similar water bodies, and provides a technical method for the supervision of black-odor water bodies.


Asunto(s)
Tecnología de Sensores Remotos , Agua , Ciudades , Árboles de Decisión , Monitoreo del Ambiente , Odorantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA