Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38426328

RESUMEN

CRISPR/Cas9 is a promising RNA-guided genome editing technology, which consists of a Cas9 nuclease and a single-guide RNA (sgRNA). So far, a number of sgRNA prediction softwares have been developed. However, they were usually designed for protein-coding genes without considering that long non-coding RNA (lncRNA) genes may have different characteristics. In this study, we first evaluated the performances of a series of known sgRNA-designing tools in the context of both coding and non-coding datasets. Meanwhile, we analyzed the underpinnings of their varied performances on the sgRNA's specificity for lncRNA including nucleic acid sequence, genome location and editing mechanism preference. Furthermore, we introduce a support vector machine-based machine learning algorithm named CRISPRlnc, which aims to model both CRISPR knock-out (CRISPRko) and CRISPR inhibition (CRISPRi) mechanisms to predict the on-target activity of targets. CRISPRlnc combined the paired-sgRNA design and off-target analysis to achieve one-stop design of CRISPR/Cas9 sgRNAs for non-coding genes. Performance comparison on multiple datasets showed that CRISPRlnc was far superior to existing methods for both CRISPRko and CRISPRi mechanisms during the lncRNA-specific sgRNA design. To maximize the availability of CRISPRlnc, we developed a web server (http://predict.crisprlnc.cc) and made it available for download on GitHub.


Asunto(s)
ARN Guía de Sistemas CRISPR-Cas , ARN Largo no Codificante , Sistemas CRISPR-Cas , ARN Largo no Codificante/genética , Edición Génica , Aprendizaje Automático
2.
Plants (Basel) ; 11(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145796

RESUMEN

Lateral organ boundaries domain (LBD) proteins are plant-specific transcription factors that play important roles in organ development and stress response. However, the function of LBD genes has not been reported in Euphorbiaceae. In this paper, we used Jatropha curcas as the main study object and added rubber tree (Hevea brasiliensis), cassava (Manihot esculenta Crantz) and castor (Ricinus communis L.) to take a phylogenetic analysis of LBD genes. Of LBD, 33, 58, 54 and 30 members were identified in J. curcas, rubber tree, cassava and castor, respectively. The phylogenetic analysis showed that LBD members of Euphorbiaceae could be classified into two major classes and seven subclasses (Ia-Ie,IIa-IIb), and LBD genes of Euphorbiaceae tended to cluster in the same branch. Further analysis showed that the LBD genes of Euphorbiaceae in the same clade usually had similar protein motifs and gene structures, and tissue expression patterns showed that they also have similar expression profiles. JcLBDs in class Ia and Ie are mainly expressed in male and female flowers, and there are multiple duplication genes with similar expression profiles in these clades. It was speculated that they are likely to play important regulatory roles in flower development. Our study provided a solid foundation for further investigation of the role of LBD genes in the sexual differentiaion of J. curcas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA