Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Paediatr Anaesth ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775778

RESUMEN

BACKGROUND: Unintended postoperative hypothermia in infants is associated with increased mortality and morbidity. We noted consistent hypothermia postoperatively in more than 60% of our neonatal intensive care (NICU) babies. Therefore, we set out to determine whether a targeted quality improvement (QI) project could decrease postoperative hypothermia rates in infants. OBJECTIVES: Our SMART aim was to reduce postoperative hypothermia (<36.5°C) in infants from 60% to 40% within 6 months. METHODS: This project was approved by IRB at Guangzhou Women and Children's Medical Center, China. The QI team included multidisciplinary healthcare providers in China and QI experts from Children's Hospital of Philadelphia, USA. The plan-do-study-act (PDSA) cycles included establishing a perioperative-thermoregulation protocol, optimizing the transfer process, and staff education. The primary outcome and balancing measures were, respectively, postoperative hypothermia and hyperthermia (axillary temperature < 36.5°C, >37.5°C). Data collected was analyzed using control charts. The factors associated with a reduction in hypothermia were explored using regression analysis. RESULTS: There were 295 infants in the project. The percentage of postoperative hypothermia decreased from 60% to 37% over 26 weeks, a special cause variation below the mean on the statistical process control chart. Reduction in hypothermia was associated with an odds of 0.17 (95% CI: 0.06-0.46; p <.001) for compliance with the transport incubator and 0.24 (95% CI: 0.1-0.58; p =.002) for prewarming the OR ambient temperature to 26°C. Two infants had hyperthermia. CONCLUSIONS: Our QI project reduced postoperative hypothermia without incurring hyperthermia through multidisciplinary team collaboration with the guidance of QI experts from the USA.

2.
Light Sci Appl ; 13(1): 81, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584173

RESUMEN

Laser state active controlling is challenging under the influence of inherent loss and other nonlinear effects in ultrafast systems. Seeking an extension of degree of freedom in optical devices based on low-dimensional materials may be a way forward. Herein, the anisotropic quasi-one-dimensional layered material Ta2PdS6 was utilized as a saturable absorber to modulate the nonlinear parameters effectively in an ultrafast system by polarization-dependent absorption. The polarization-sensitive nonlinear optical response facilitates the Ta2PdS6-based mode-lock laser to sustain two types of laser states, i.e., conventional soliton and noise-like pulse. The laser state was switchable in the single fiber laser with a mechanism revealed by numerical simulation. Digital coding was further demonstrated in this platform by employing the laser as a codable light source. This work proposed an approach for ultrafast laser state active controlling with low-dimensional material, which offers a new avenue for constructing tunable on-fiber devices.

3.
Environ Sci Pollut Res Int ; 31(19): 28658-28670, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561532

RESUMEN

Recently, visible-light-driven photocatalysis attracts much concerns in the remediation of environmental organic pollutants. In this study, the cerium doped biochar was fabricated through the hydrothermal method, and served as an efficient photocatalyst towards rhodamine B degradation under visible light irradiation. Almost 100% of rhodamine B was removed by 2.0 g·L-1 cerium doped biochar after 60 min of visible light irradiation at pH 3, but only about 25.50% and 29.60% of rhodamine B was removed by cerium dioxide and biochar under identical conditions. The degradation process coincided well with the pseudo-first-order kinetic model, and the photodegradation rate constant of cerium doped biochar was 0.0485·min-1, which was respectively 97 and 44 times that of biochar (0.0005·min-1) and cerium dioxide (0.0011·min-1). According to the trapping experiments and electron spin resonance spectroscopy analysis, h+, O2-∙ and ∙OH all participated in the degradation of rhodamine B in the cerium doped biochar photocatalytic systems, and the function of h+ and ∙OH was dominated. Consequently, the biochar could not only be an excellent carrier for supporting cerium dioxide, but also greatly improved its photocatalytic activity. The band gap of cerium doped biochar was narrower than cerium dioxide, which could improve the separation and migration of photogenerated electron-hole pairs under visible-light excitation, thus ultimately enhanced the degradation of rhodamine B. This work provided a deeper understanding of the preparation of biochar-based photocatalyst and its application in the remediation of environmental organic pollution.


Asunto(s)
Cerio , Carbón Orgánico , Rodaminas , Cerio/química , Carbón Orgánico/química , Catálisis , Rodaminas/química , Colorantes/química , Fotólisis , Cinética , Luz
4.
Ultrasound Med Biol ; 50(6): 939-945, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521696

RESUMEN

OBJECTIVE: The objective of this study is to explore the patterns of alteration in left ventricular systolic function among patients with severe aortic stenosis (SAS) through the application of automatic myocardial motion quantification (aCMQ) techniques. Furthermore, we seek to ascertain dependable quantitative markers for the assessment of impaired left ventricular function in patients with SAS and an ejection fraction (EF) ≥ 60%. METHODS: Seventy patients who underwent echocardiography and received a diagnosis of severe aortic stenosis (SAS) in the hospital from November 2021 to August 2022 were selected for the SAS group and categorized into three subgroups based on ejection fraction (EF)-SAS group with EF ≥ 60%, SAS group with EF ranging from 50% to 59%, and SAS group with EF < 50%. Concurrently, 30 healthy individuals were recruited at the hospital during the same timeframe to serve as the control group. Participants from both groups underwent standard transthoracic echocardiography to assess conventional echocardiographic parameters. Dynamic images were examined using automatic myocardial motion quantification (aCMQ) software to derive longitudinal peak strain (LPS) parameters, which were then subjected to statistical analysis. RESULTS: In comparison to the control group participants, the measurements of ascending aorta diameter (AoD), left atrium diameter (LAD), interventricular septal end diastolic thickness (IVSd), left ventricular posterior wall end diastolic thickness (LVPWd), peak systolic velocity (Vmax), and mean pressure gradient (MPG) were significantly higher in the SAS groups (p < 0.05). When compared to participants in the SAS group with an EF ≥ 60%, the values of IVSd, LVPWd, Vmax, and MPG in the SAS group with EF ranging from 50% to 59% were significantly elevated (p < 0.05). Similarly, left ventricular end-diastolic diameter (LVEDD), the ratio of early diastolic mitral inflow velocity to early diastolic mitral annular velocity (E/e'), and the ratio of early to late diastolic mitral inflow velocities (E/A) in the SAS group with EF < 50% were significantly elevated (p < 0.05). The absolute values of longitudinal peak strain (LPS) in the SAS groups were significantly lower in comparison to those in the control group (p < 0.05). Furthermore, all measurements of left ventricular global longitudinal systolic peak strain (GLPS) showed a positive correlation with MPG, a moderate negative correlation with aortic valve area index (AVAI), and a moderate positive correlation with E/A. CONCLUSIONS: Patients with SAS and an EF < 50% exhibited the most profound impairment in left ventricular myocardial function. Utilizing the aCMQ technique enables the precise and quantitative evaluation of the severity of impaired left ventricular systolic function in patients within the SAS group with an EF ≥ 60%.


Asunto(s)
Estenosis de la Válvula Aórtica , Ecocardiografía , Función Ventricular Izquierda , Humanos , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/fisiopatología , Masculino , Femenino , Anciano , Ecocardiografía/métodos , Persona de Mediana Edad , Función Ventricular Izquierda/fisiología , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología , Índice de Severidad de la Enfermedad
5.
Chem Commun (Camb) ; 60(15): 2009-2021, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38275083

RESUMEN

Self-assembly is an important strategy for constructing ordered structures and complex functions in nature. Based on this, people can imitate nature and artificially construct functional materials with novel structures through the supermolecular self-assembly pathway of biological interfaces. Among the many assembly units, peptide molecular self-assembly has received widespread attention in recent years. In this review, we introduce the interactions (hydrophobic interaction, hydrogen bond, and electrostatic interaction) between peptide nanomaterials and biological interfaces, summarizing the latest advancements in multifunctional self-assembling peptide materials. We systematically demonstrate the assembly mechanisms of peptides at biological interfaces, such as proteins and cell membranes, while highlighting their application potential and challenges in fields like drug delivery, antibacterial strategies, and cancer therapy.


Asunto(s)
Nanoestructuras , Péptidos , Humanos , Péptidos/química , Nanoestructuras/química , Sistemas de Liberación de Medicamentos
6.
Inflammation ; 47(1): 60-73, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37679586

RESUMEN

Sepsis-induced tissue and organ damage is caused by an overactive inflammatory response, immune dysfunction, and coagulation dysfunction. Danger-associated molecular pattern (DAMP) molecules play a critical role in the excessive inflammation observed in sepsis. In our previous research, we identified NMI as a new type of DAMP molecule that promotes inflammation in sepsis by binding to toll-like receptor 4 (TLR4) on macrophage surfaces, activating the NF-κB pathway, and releasing pro-inflammatory cytokines. However, it is still unknown whether NMI plays a significant role in other pathways. Our analysis of bulk and single-cell transcriptome data from the GEO database revealed a significant increase in NMI expression in neutrophils and monocytes in sepsis patients. It is likely that NMI functions through multiple receptors in sepsis, including IFNAR1, IFNAR2, TNFR1, TLR3, TLR1, IL9R, IL10RB, and TLR4. Furthermore, the correlation between NMI expression and the activation of NF-κB, MAPK, and JAK pathways, as well as the up-regulation of their downstream pro-inflammatory factors, demonstrates that NMI may exacerbate the inflammatory response through these signaling pathways. Finally, we demonstrated that STAT1 phosphorylation was enhanced in RAW cells upon stimulation with NMI, supporting the activation of JAK signaling pathway by NMI. Collectively, these findings shed new light on the functional mechanism of NMI in sepsis.


Asunto(s)
FN-kappa B , Sepsis , Humanos , Receptor Toll-Like 4 , Transducción de Señal , Inflamación
7.
Infect Drug Resist ; 16: 7405-7411, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077301

RESUMEN

Mycotic pseudoaneurysm of the ascending aorta is extremely uncommon, particularly in children with no prior cardiac surgery or trauma. We report a rare case of a mycotic pseudoaneurysm of the ascending aorta in a 2-year-old girl with no history of cardiac surgery. Investigations revealed a methicillin-resistant Staphylococcus aureus infection and significant pericardial effusion in the child who presented with persistent fever and altered mental state. Cardiac ultrasound revealed a disruption in the aortic wall and a tumor-like structure. Contrast-enhanced computed tomography confirmed an ascending aortic pseudoaneurysm with thrombus. The child underwent successful surgical treatment without implants. This case emphasizes the diagnostic significance of imaging, particularly the advantages of ultrasound in pediatric settings, and the need for timely and accurate diagnosis using appropriate imaging modalities in children.

8.
Pediatr Investig ; 7(4): 239-246, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38050540

RESUMEN

Importance: Central line-associated bloodstream infection (CLABSI) is one of the most serious complications of central venous access devices. Reducing the risk of CLABSI is of utmost significance in efforts to improve neonatal mortality rates and enhance long-term prognosis. Objective: To determine the dwell time and incidence of CLABSI of umbilical venous catheterization (UVC) for preterm infants in China. Methods: Preterm infants with UVC admitted to 44 tertiary neonatal intensive care units in 24 provinces in China were enrolled. Study period was from November 2019 to August 2021. The end point of observations was 48 h after umbilical venous (UV) catheter removal. The primary outcomes were dwell time of UV catheter and UVC-associated CLABSI. Data between infants with UV catheter dwell time ≤7 days and >7 days, and with birth weight (BW) ≤1000 g and >1000 g were compared. Results: In total, 2172 neonates were enrolled (gestational age 30.0 ± 2.4 weeks, BW 1258.5 ± 392.8 g). The median UV catheter dwell time was 7 (6-10) days. The incidence of UVC-associated CLABSI was 3.03/1000 UV catheter days. For infants with UV catheter dwell time ≤7 days and >7 days, the UVC-associated CLABSI incidence was 3.71 and 2.65 per 1000 UV catheter days, respectively, P = 0.23. For infants with UVC dwell times of 3-6, 7-12, and 13-15 days, the UVC-associated CLABSI rates were 0.14%, 0.68%, and 2.48% (P < 0.01). The Kaplan-Meier plot of UV catheter dwell time to CLABSI showed no difference between infants with BW ≤1000 g and >1000 g (P = 0.60). Interpretation: The median dwell time of UV catheter was 7 days, and the incidence of UVC-associated CLABSI was 3.03/1000 catheter days in China. The daily risk of UVC-associated CLABSI and other complications increased with the dwell time.

9.
J Inflamm Res ; 16: 4265-4270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37791118

RESUMEN

Background: Aortic arch atresia is a rare congenital cardiac defect that may occur after birth. Pregnant women with gestational diabetes mellitus may increase the risk of aortic arch atresia in newborns after birth. Case Description: A 16-day-old infant was referred to our hospital on the 15th postnatal day after an interrupted or atretic aortic arch was discovered. No obvious abnormality was detected in the infant during the prenatal ultrasound. Laboratory tests showed elevated inflammatory marker levels. Transthoracic echocardiography showed stenosis of the transverse arch of the aorta and a blind end at the distal end of the left subclavian artery. During surgery, it was found that the isthmus of the aorta was uninterrupted but completely occluded due to inflammation. Conclusion: This case demonstrates that type A interrupted aortic arch and coarctation of the aorta can be acquired after birth, and if coarctation of the aorta is complicated by inflammation or if the pregnant women have gestational diabetes mellitus, it can result in aortic arch atresia as the patient's condition worsens. It is advised to consider aortic arch atresia when imaging reveals type A interrupted aortic arch.

10.
ACS Appl Mater Interfaces ; 15(40): 47250-47259, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37751475

RESUMEN

The van der Waals layered material MnBi2Te4, as a magnetic topological insulator, has attracted tremendous interest for novel physics research in the fields of condensed matter physics and materials science. However, the nonlinear optical properties of MnBi2Te4 and its applications in ultrafast optics have rarely been explored. In this study, high-quality MnBi2Te4 nanosheets have been successfully synthesized by the self-flux method. The morphology, chemical composition, magnetic properties, and nonlinear optical characteristics were systematically investigated. The magnetic transition of MnBi2Te4 was confirmed by a low-temperature spatially resolved spectroscopic technique. The saturable absorption property of MnBi2Te4 was measured by a balanced twin-detector system with a modulation depth of 4.5% and a saturation optical intensity of 2.35 GW/cm2. Furthermore, by inserting the MnBi2Te4-based saturable absorber, a soliton mode-locking laser operating at 1558.8 nm was obtained with a pulse duration of 331 fs. This research will pave the way for applications of the magnetic TI MnBi2Te4 in nonlinear optics and photonics.

11.
Microbiome ; 11(1): 184, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596617

RESUMEN

BACKGROUND: The gut microbiome is closely associated with health status, and any microbiota dysbiosis could considerably impact the host's health. In addition, many active consortium projects have generated many reference datasets available for large-scale retrospective research. However, a comprehensive monitoring framework that analyzes health status and quantitatively present bacteria-to-health contribution has not been thoroughly investigated. METHODS: We systematically developed a statistical monitoring diagram for personalized health status prediction and analysis. Our framework comprises three elements: (1) a statistical monitoring model was established, the health index was constructed, and the health boundary was defined; (2) healthy patterns were identified among healthy people and analyzed using contrast learning; (3) the contribution of each bacterium to the health index of the diseased population was analyzed. Furthermore, we investigated disease proximity using the contribution spectrum and discovered multiple multi-disease-related targets. RESULTS: We demonstrated and evaluated the effectiveness of the proposed monitoring framework for tracking personalized health status through comprehensive real-data analysis using the multi-study cohort and another validation cohort. A statistical monitoring model was developed based on 92 microbial taxa. In both the discovery and validation sets, our approach achieved balanced accuracies of 0.7132 and 0.7026, and AUC of 0.80 and 0.76, respectively. Four health patterns were identified in healthy populations, highlighting variations in species composition and metabolic function across these patterns. Furthermore, a reasonable correlation was found between the proposed health index and host physiological indicators, diversity, and functional redundancy. The health index significantly correlated with Shannon diversity ([Formula: see text]) and species richness ([Formula: see text]) in the healthy samples. However, in samples from individuals with diseases, the health index significantly correlated with age ([Formula: see text]), species richness ([Formula: see text]), and functional redundancy ([Formula: see text]). Personalized diagnosis is achieved by analyzing the contribution of each bacterium to the health index. We identified high-contribution species shared across multiple diseases by analyzing the contribution spectrum of these diseases. CONCLUSIONS: Our research revealed that the proposed monitoring framework could promote a deep understanding of healthy microbiomes and unhealthy variations and served as a bridge toward individualized therapy target discovery and precise modulation. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Estudios Retrospectivos , Análisis de Datos , Estado de Salud
12.
Food Chem Toxicol ; 180: 114009, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37652126

RESUMEN

Ulcerative colitis (UC) is believed to arise from an imbalance between the intestinal microbiota and mucosal immunity, leading to excessive intestinal inflammation. Modulating the gut microbial community through dietary components presents a valuable strategy in aiding the treatment of UC. In this study, esters formed by binding of well-known prebiotics, fructooligosaccharides (FOS), with short chain fatty acids (SCFAs) via both enzymatic and chemical methods were evaluated for their impact on the gut microbiota of UC patients. An in vitro human colonic fermentation model was employed to monitor changes in total carbohydrates and SCFAs production during the fermentation of these esters by microbiota from patients with active and remission UC. The results showed that pronounced abundance of [Ruminococcus]_gnavus_group, Escherichia_Shigella, Lachnoclostridium, Klebsiella and other potential pathogens were detected in the fecal samples from UC patients, with a milder condition observed during the remission phase. Significant higher levels of corresponding SCFA were observed in the groups with addition of FOS-SCFAs esters during fermentation. Butyrylated fructooligosaccharides (B-FOS) and propionylated fructooligosaccharides (P-FOS) by enzymatic synthesis successfully promoted the proliferation of Bifidobacterium and inhibited Clostridium_sensu_stricto_1 and Klebsiella. Overall, B-FOS and P-FOS exhibit promising potential for restoring intestinal homeostasis and alleviating intestinal inflammation in individuals with UC.


Asunto(s)
Colitis Ulcerosa , Microbiota , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Prebióticos/análisis , Fermentación , Ácidos Grasos Volátiles/metabolismo , Heces/química , Inflamación
13.
Adv Healthc Mater ; 12(26): e2300982, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37439543

RESUMEN

Chemodynamic therapy (CDT) is an emerging targeted treatment technique for tumors via the generation of highly cytotoxic hydroxyl radical (·OH) governed by tumor microenvironment-assisted Fenton reaction. Despite high effectiveness, it faces limitations like low reaction efficiency and limited endogenous H2 O2 , compromising its therapeutic efficacy. This study reports a novel platform with enhanced CDT performance by in situ sono-activated cascade Fenton reaction. A piezoelectric g-C3 N4 (Au-Fe-g-C3 N4 ) nanosheet is developed via sono-activated synergistic effect/H2 O2 self-supply mediated cascade Fenton reaction, realizing in situ ultrasound activated cascade Fenton reaction kinetics by synergistic modulation of electron-hole separation. The nanosheets consist of piezoelectric g-C3 N4 nanosheet oxidizing H2 O to highly reactive H2 O2 from the valence band, Fe3+ /Fe2+ cycling activated by conduction band to generate ·OH, and Au nanoparticles that lower the bandgap and further adopt electrons to generate more 1 O2 , resulting in improved CDT and sonodynamic therapy (SDT). Moreover, the Au-Fe-g-C3 N4 nanosheet is further modified by the targeted peptide to obtain P-Au-Fe-g-C3 N4 , which inhibits tumor growth in vivo effectively by generating reactive oxygen species (ROS). These results demonstrated that the sono-activated modulation translates into a high-efficiency CDT with a synergistic effect using SDT for improved anti-tumor therapy.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Humanos , Electrones , Oro/farmacología , Cinética , Especies Reactivas de Oxígeno , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Peróxido de Hidrógeno
14.
J Med Imaging (Bellingham) ; 10(4): 045001, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37457791

RESUMEN

Purpose: Stereo matching methods that enable depth estimation are crucial for visualization enhancement applications in computer-assisted surgery. Learning-based stereo matching methods have shown great promise in making accurate predictions on laparoscopic images. However, they require a large amount of training data, and their performance may be degraded due to domain shifts. Approach: Maintaining robustness and improving the accuracy of learning-based methods are still open problems. To overcome the limitations of learning-based methods, we propose a disparity refinement framework consisting of a local disparity refinement method and a global disparity refinement method to improve the results of learning-based stereo matching methods in a cross-domain setting. Those learning-based stereo matching methods are pre-trained on a large public dataset of natural images and are tested on two datasets of laparoscopic images. Results: Qualitative and quantitative results suggest that our proposed disparity framework can effectively refine disparity maps when they are noise-corrupted on an unseen dataset, without compromising prediction accuracy when the network can generalize well on an unseen dataset. Conclusions: Our proposed disparity refinement framework could work with learning-based methods to achieve robust and accurate disparity prediction. Yet, as a large laparoscopic dataset for training learning-based methods does not exist and the generalization ability of networks remains to be improved, the incorporation of the proposed disparity refinement framework into existing networks will contribute to improving their overall accuracy and robustness associated with depth estimation.

15.
Cyborg Bionic Syst ; 4: 0023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287460

RESUMEN

Magnetic beads manipulation in microfluidic chips is a promising research field for biological application, especially in the detection of biological targets. In this review, we intend to present a thorough and in-depth overview of recent magnetic beads manipulation in microfluidic chips and its biological application. First, we introduce the mechanism of magnetic manipulation in microfluidic chip, including force analysis, particle properties, and surface modification. Then, we compare some existing methods of magnetic manipulation in microfluidic chip and list their biological application. Besides, the suggestions and outlook for future developments in the magnetic manipulation system are also discussed and summarized.

16.
Waste Manag ; 168: 126-136, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290341

RESUMEN

Sewage sludge is a major by-product of wastewater treatment, and its unfavorable properties are frequently a key restriction of disposal technologies, resulting in high costs and ineffective waste management. Smoldering combustion is a new technique for disposing of organic solid waste with high moisture content, which efficiently recovers energy with minimal igniting energy requirements. The objective of this study is to investigate the effects of airflow rate on sewage sludge (SS) smoldering combustion by combining experimental and modeling analyses. Results show that air channeling easily forms at the reactor's edge, intensifying the smoldering reaction and forming a concave smoldering front. The minimum airflow rate required for self-sustaining smoldering is 0.3 cm/s. As the airflow rate increases, convective heat transfer becomes dominant over conduction and radiation, resulting in a surge in smoldering temperature and velocity at 0.6 cm/s, followed by a linear increase. The maximum airflow rate at which the smoldering process can propagate stably during SS disposal is 8 cm/s. The expressions of the smoldering characteristics are obtained by using the activation energy asymptotic approach, and the calculated and experimental values show the same trend of variation, with good agreement at low airflow rate conditions. Sensitivity analysis shows that porosity φ is the most crucial parameter affecting smoldering temperature and velocity.


Asunto(s)
Administración de Residuos , Purificación del Agua , Aguas del Alcantarillado , Administración de Residuos/métodos , Temperatura , Calor , Purificación del Agua/métodos
17.
Immunogenetics ; 75(4): 385-393, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37269334

RESUMEN

The recombination activating gene 1 (RAG1) is essential for V(D)J recombination during T- and B-cell development. In this study, we presented a case study of a 41-day-old female infant who exhibited symptoms of generalized erythroderma, lymphadenopathy, hepatosplenomegaly, and recurrent infections including suppurative meningitis and septicemia. The patient showed a T+B-NK+ immunophenotype. We observed an impaired thymic output, as indicated by reduced levels of naive T cells and sjTRECs, coupled with a restricted TCR repertoire. Additionally, T-cell CFSE proliferation was impaired, indicating a suboptimal T-cell response. Notably, our data further revealed that T cells were in an activated state. Genetic analysis revealed a previously reported compound heterozygous mutation (c. 1186C > T, p. R396C; c. 1210C > T, p. R404W) in the RAG1 gene. Structural analysis of RAG1 suggested that the R396C mutation might lead to the loss of hydrogen bonds with neighboring amino acids. These findings contribute to our understanding of RAG1 deficiency and may have implications for the development of novel therapies for patients with this condition.


Asunto(s)
Proteínas de Homeodominio , Inmunodeficiencia Combinada Grave , Femenino , Humanos , Lactante , Genes RAG-1 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mutación , Inmunodeficiencia Combinada Grave/genética , Linfocitos T
18.
Comput Med Imaging Graph ; 108: 102248, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37315397

RESUMEN

Endoscopic endonasal surgery is a medical procedure that utilizes an endoscopic video camera to view and manipulate a surgical site accessed through the nose. Despite these surgeries being video recorded, these videos are seldom reviewed or even saved in patient files due to the size and length of the video file. Editing to a manageable size may necessitate viewing 3 h or more of surgical video and manually splicing together the desired segments. We suggest a novel multi-stage video summarization procedure utilizing deep semantic features, tool detections, and video frame temporal correspondences to create a representative summarization. Summarization by our method resulted in a 98.2% reduction in overall video length while preserving 84% of key medical scenes. Furthermore, resulting summaries contained only 1% of scenes with irrelevant detail such as endoscope lens cleaning, blurry frames, or frames external to the patient. This outperformed leading commercial and open source summarization tools not designed for surgery, which only preserved 57% and 46% of key medical scenes in similar length summaries, and included 36% and 59% of scenes containing irrelevant detail. Experts agreed that on average (Likert Scale = 4) that the overall quality of the video was adequate to share with peers in its current state.


Asunto(s)
Endoscopía , Base del Cráneo , Humanos
19.
Carbohydr Polym ; 317: 121100, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364962

RESUMEN

We aimed to study the structural characteristics and fermentation properties of wheat bran cell wall polysaccharides (CWPs). Sequential extractions of CWPs from wheat bran produced the water-extractable (WE) and alkali-extractable (AE) fractions. The extracted fractions were structurally characterized based on their molecular weight (Mw) and monosaccharide composition. Our findings revealed that the Mw and the ratio of arabinose to xylose (A/X) of AE were higher than those of WE and that the two fractions were mainly composed of arabinoxylans (AXs). The substrates were then subjected to in vitro fermentation by human fecal microbiota. As fermentation progressed, the total carbohydrates of WE were significantly more utilized than that of AE (p < 0.05). The AXs in WE were utilized at a higher rate than those in AE. The relative abundance of Prevotella_9, which can efficiently utilize AXs, was significantly increased in AE. The presence of AXs in AE shifted the balance away from protein fermentation and caused a delay in protein fermentation. Our study demonstrated that wheat bran CWPs can modulate the gut microbiota in a structure-dependent manner. However, future studies should further characterize the fine structure of wheat CWPs to clarify their detailed relationship with gut microbiota and metabolites.


Asunto(s)
Fibras de la Dieta , Polisacáridos , Humanos , Fibras de la Dieta/análisis , Fermentación , Polisacáridos/metabolismo , Heces/química , Pared Celular/metabolismo , Álcalis
20.
J Environ Manage ; 344: 118407, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356330

RESUMEN

Green infrastructure (GI) is used as an alternative and complement to traditional urban drainage system for mitigating urban stormwater issues mainly caused by climate change and urbanization. The combination of hydrological model and optimization algorithm can automatically find the optimal solution under multiple objectives. Given the multi-functional characteristics of GI, choosing the optimization objectives of GI are critical for multiple stakeholders. This study proposes a GI optimization method considering spatial functional zoning. Based on the basic conditions, the study area is divided into the flood risk control zone (FRCZ) and the total runoff control zone (TRCZ). The integrated model coupling hydrological model and optimization algorithm is applied to obtain the Pareto fronts and corresponding non-dominated solutions. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is used to support the decision-making process. The optimal solution obtained for the FRCZ achieves a flood risk reduction rate of 60.49% with an average life cycle cost per year of 0.20 × 108 Chinese Yuan (CNY); The optimal solution obtained for the TRCZ achieves a total runoff reduction rate of 22.83% with an average life cycle cost per year of 0.17 × 108 CNY. This study provides a reference for stakeholders in GI planning and design.


Asunto(s)
Lluvia , Urbanización , Hidrología , Inundaciones , Algoritmos , Ciudades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...