Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Chem Commun (Camb) ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742398

RESUMEN

Urea is an indispensable nitrogen-containing organic compound in modern human life. However, the current industrial synthesis of urea involves ammonia, which is produced through the Haber-Bosch process under harsh reaction conditions, causing huge energy consumption and heavy environmental pollution. Electrochemical reduction of carbon dioxide (CO2) and nitrogenous species (N2, NOx- and NO) have achieved significant progress, offering a promising approach for the electrochemical C-N coupling to produce urea under ambient conditions. Urea synthesis driven by renewable electricity represents a suitable alternative to the traditional process, contributing to the goal of carbon neutrality and nitrogen cycles. However, challenges such as low yield rate, poor selectivity and unveiled reaction mechanisms still need to be addressed. This review provides a summary of the latest catalysts utilized in urea electrosynthesis, aiming to provide guidance and prospects for the development of high-performance catalysts.

2.
Science ; 384(6693): 301-306, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38635711

RESUMEN

China's massive wave of urbanization may be threatened by land subsidence. Using a spaceborne synthetic aperture radar interferometry technique, we provided a systematic assessment of land subsidence in all of China's major cities from 2015 to 2022. Of the examined urban lands, 45% are subsiding faster than 3 millimeters per year, and 16% are subsiding faster than 10 millimeters per year, affecting 29 and 7% of the urban population, respectively. The subsidence appears to be associated with a range of factors such as groundwater withdrawal and the weight of buildings. By 2120, 22 to 26% of China's coastal lands will have a relative elevation lower than sea level, hosting 9 to 11% of the coastal population, because of the combined effect of city subsidence and sea-level rise. Our results underscore the necessity of enhancing protective measures to mitigate potential damages from subsidence.

3.
Molecules ; 29(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611854

RESUMEN

OBJECTIVE: This study aimed to investigate methodologies for the extraction and purification of polysaccharides from Rosa roxburghii Tratt fruits and their impact on various cellular processes in prostate cancer DU145 cells, including survival rate, migration, invasion, cell cycle, and apoptosis. RESULTS: Compared to the control group, the polysaccharide exhibited a significant reduction in the viability, migration, and invasion rates of DU145 cells in a time- and dose-dependent manner within the polysaccharide-treated groups. Additionally, it effectively arrested the cell cycle of DU145 cells at the G0/G1 phase by downregulating the expressions of CDK-4, CDK-6, and Cyclin D1. Furthermore, it induced apoptosis by upregulating the expressions of Caspase 3, Caspase 8, Caspase 9, and BAX. METHODS: Polysaccharides were extracted from Rosa roxburghii Tratt sourced from Yunnan, China. Extraction and decolorization methods were optimized using response surface methodology, based on a single-factor experiment. Polysaccharide purification was carried out using DEAE-52 cellulose and Sephadex G-100 column chromatography. The optimal dosage of R. roxburghii Tratt polysaccharide affecting DU145 cells was determined using the CCK-8 assay. Cell migration and invasion were assessed using transwell and scratch assays. Flow cytometry was employed to analyze the effects on the cell cycle and apoptosis. Western blotting and Quantitative real-time PCR were utilized to examine protein and mRNA expressions in DU145 cells, respectively. CONCLUSIONS: Rosa roxburghii Tratt polysaccharides, consisting of D-mannose, L-rhamnose, N-acetyl-D-glucosamine, D-galacturonic acid, D-glucose, D-galactcose, D-xylose, L-arabinose, and L-fucose, possess the ability to hinder DU145 cell proliferation, migration, and invasion while inducing apoptosis through the modulation of relevant protein and gene expressions.


Asunto(s)
Carcinoma , Neoplasias de la Próstata , Rosa , Masculino , Humanos , China , Apoptosis , Neoplasias de la Próstata/tratamiento farmacológico , Proliferación Celular , Polisacáridos/farmacología
4.
Adv Sci (Weinh) ; : e2401515, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654624

RESUMEN

Self-powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual-response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO2/carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper-like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open-circuit voltage of 0.927 V, a short-circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes' rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices.

5.
Microorganisms ; 12(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38674623

RESUMEN

The production of municipal sludge is steadily increasing in line with the production of sewage. A wealth of organic contaminants, including nutrients and energy, are present in municipal sludge. Anaerobic fermentation can be used to extract useful resources from sludge, producing hydrogen, methane, short-chain fatty acids, and, via further chain elongation, medium-chain fatty acids. By comparing the economic and use values of these retrieved resources, it is concluded that a high-value resource transformation of municipal sludge can be achieved via the production of medium-chain fatty acids using anaerobic fermentation, which is a hotspot for future research. In this study, the selection of the pretreatment method, the method of producing medium-chain fatty acids, the influence of the electron donor, and the technique used to enhance product synthesis in the anaerobic fermentation process are introduced in detail. The study outlines potential future research directions for medium-chain fatty acid production using municipal sludge. These acids could serve as a starting point for investigating other uses for municipal sludge.

6.
Chemosphere ; 355: 141823, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552798

RESUMEN

Chain elongation technology utilises microorganisms in anaerobic digestion to transform waste biomass into medium-chain fatty acids that have greater economic value. This innovative technology expands upon traditional anaerobic digestion methods, requiring abundant substrates that serve as electron donors and acceptors, and inoculating microorganisms with chain elongation functions. While this process may result in the production of by-products and elicit competitive responses, toxicity suppression of microorganisms by substrates and products remains a significant obstacle to the industrialisation of chain elongation technology. This study provides a comprehensive overview of existing research on widely employed electron donors and their synthetic reactions, competitive reactions, inoculum selection, toxicity inhibition of substrates and products, and increased chain elongation approaches. Additionally, it presents actionable recommendations for future research and development endeavours in this domain, intending to inspire and guide researchers in advancing the frontiers of chain elongation technology.


Asunto(s)
Reactores Biológicos , Ácidos Grasos , Fermentación , Biomasa
7.
J Environ Manage ; 354: 120445, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38412732

RESUMEN

In this study, the effect of external agricultural phytohormones (mixed phytohormones) addition (1.0, 5.0, 10.0, and 20.0 mg L-1) on the growth performance, lipid productivity, and sedimentation efficiency of Chlorella pyrenoidosa cultivated in saline wastewater was investigated. Among the different concentrations evaluated, the highest biomass (1.00 g L-1) and lipid productivity (11.11 mg L-1 d-1) of microalgae were obtained at 10.0 mg L-1 agricultural phytohormones addition. Moreover, exogenous agricultural phytohormones also improved the sedimentation performance of C. pyrenoidosa, which was conducive to the harvest of microalgae resources, and the improvement of sedimentation performance was positively correlated with the amount of agricultural phytohormones used. The promotion of extracellular polymeric substances synthesis by phytohormones in microalgal cells could be considered as the reason for its promotion of microalgal sedimentation. Transcriptome analysis revealed that the addition of phytohormones upregulated the expression of genes related to the mitogen-activated protein kinase (MAPK)-mediated phytohormone signaling pathway and lipid synthesis, thereby improving salinity tolerance and lipid production in C. pyrenoidosa. Overall, agricultural phytohormones provide an effective and inexpensive strategy for increasing the lipid productivity and sedimentation efficiency of microalgae cultured in saline wastewater.


Asunto(s)
Chlorella , Microalgas , Aguas Residuales , Reguladores del Crecimiento de las Plantas , Lípidos , Microalgas/metabolismo , Biomasa
8.
Appl Environ Microbiol ; 90(2): e0201623, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38214515

RESUMEN

Global warming has led to a high incidence of extreme heat events, and the frequent occurrence of extreme heat events has had extensive and far-reaching impacts on wetland ecosystems. The widespread distribution of plastics in the environment, including polyethylene (PE), polylactic acid (PLA), and tire particles (TPs), has caused various environmental problems. Here, high-throughput sequencing techniques and metabolomics were used for the first time to investigate the effects of three popular microplastic types: PE, PLA, and TP, on the sediment microbiome and the metabolome at both temperatures. The microplastics were incorporated into the sediment at a concentration of 3% by weight of the dry sediment (wt/wt), to reflect environmentally relevant conditions. Sediment enzymatic activity and physicochemical properties were co-regulated by both temperatures and microplastics producing significant differences compared to controls. PE and PLA particles inhibited bacterial diversity at low temperatures and promoted bacterial diversity at high temperatures, and TP particles promoted both at both temperatures. For bacterial richness, only PLA showed inhibition at low temperature; all other treatments showed promotion. PE, PLA, and TP microplastics changed the community structure of sediment bacteria, forming two clusters at low and high temperatures. Furthermore, PE, PLA, and TP changed the sediment metabolic profiles, producing differential metabolites such as lipids and molecules, organic heterocyclic compounds, and organic acids and their derivatives, especially TP had the most significant effect. These findings contribute to a more comprehensive understanding of the potential impact of microplastic contamination.IMPORTANCEIn this study, we added 3% (wt/wt) microplastic particles, including polyethylene, polylactic acid, and tire particles, to natural sediments under simulated laboratory conditions. Subsequently, we simulated the sediment microbial and ecosystem responses under different temperature conditions by incubating them for 60 days at 15°C and 35°C, respectively. After synthesizing these results, our study strongly suggests that the presence of microplastics in sediment ecosystems and exposure under different temperature conditions may have profound effects on soil microbial communities, enzyme activities, and metabolite profiles. This is important for understanding the potential hazards of microplastic contamination on terrestrial ecosystems and for developing relevant environmental management strategies.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Plásticos , Microplásticos/química , Microplásticos/farmacología , Polietileno/análisis , Polietileno/farmacología , Ecosistema , Temperatura , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/microbiología , Poliésteres , Metaboloma , Monitoreo del Ambiente
9.
Chemosphere ; 350: 141190, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215830

RESUMEN

The increasing prevalence of microplastics in the environment has become a concern for various ecosystems, including wetland ecosystems. Here, we investigated the effects of three popular microplastic types: polyethylene, polylactic acid, and tire particles at 5 °C and 25 °C on the sediment microbiome and metabolome at the 3% (w/w) level. Results indicated that temperature greatly influenced catalase and neutral phosphatase activities, whereas the type of microplastic had a more significant impact on urease and dehydrogenase activities. The addition of microplastic, especially tire particles, increased microbial diversity and significantly altered the microbial community structure and metabolic profile, leading to the formation of different clusters of microbial communities depending on the temperature. Nonetheless, the effect of temperature on the metabolite composition was less significant. Functional prediction showed that the abundance of functional genes related to metabolism and biogeochemical cycling increased with increasing temperature, especially the tire particles treatment group affected the nitrogen cycling by inhibiting ureolysis and nitrogen fixation. These observations emphasize the need to consider microplastic type and ambient temperature to fully understand the ecological impact of microplastics on microbial ecosystems.


Asunto(s)
Microbiota , Microplásticos , Microplásticos/toxicidad , Microplásticos/química , Plásticos/farmacología , Temperatura , Metaboloma
10.
J Multidiscip Healthc ; 16: 4027-4038, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111828

RESUMEN

Purpose: Elucidation of the cardio-oncologic knowledge among the oncology nurses of tertiary hospitals in Shanxi Province to provide better insights and directions for management by nursing managers. Background: China's National Health and Wellness Commission issued the Action Plan for Further Improving Nursing Services in June 2023, which requires nurses to provide patients with physical and mental holistic nursing services, such as medical care, condition observation, assistance with treatment, and health guidance. Most oncology patients are treated with chemotherapy, but the modality can cause greater harm to patients, especially cardiotoxicity. How to provide precise care for chemotherapy patients is a problem for nursing managers. Methods: In order to investigate the level of cardio-oncologic knowledge among the oncology nurses of tertiary care hospitals in Shanxi Province, China, a questionnaire was created based on the relevant literature and the provided instructions on cardio-oncology. The chi-squared test was performed for multiple comparisons of the level of knowledge of disease observation, health guidance, and implementation of treatment. Spearman correlation analysis was performed to analyze the correlation between the levels of cardio-oncologic knowledge and general information of hospitals and nurses. Results: Cardio-oncology awareness among the oncology nurses was 0.1%-44.7%, the awareness rate of single dimension was 0 to 3.9%, and overall awareness rate was 0. A partially significant difference was revealed in the two-by-two comparisons of the awareness rates of the three dimensions of disease observation, health guidance, and implementation of treatment (P < 0.05). A correlation was observed between the cardio-oncologic knowledge and some of the hospital and the nurses' general information data (P < 0.05). Conclusion: Oncology nurses exhibited a low rate of awareness related to cardio-oncology. Hospitals could establish oncology nursing teams to train the oncology nurses to promote their cardio-oncologic knowledge and ensure the quality of daily care provided by these nurses.

11.
Circ Res ; 133(9): 739-757, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37750320

RESUMEN

BACKGROUND: In developmental and pathological tissues, nascent vessel networks generated by angiogenesis require further pruning/regression to delete nonfunctional endothelial cells (ECs) by apoptosis and migration. Mechanisms underlying EC apoptosis during vessel pruning remain elusive. TMEM215 (transmembrane protein 215) is an endoplasmic reticulum-located, 2-pass transmembrane protein. We have previously demonstrated that TMEM215 knockdown in ECs leads to cell death, but its physiological function and mechanism are unclear. METHODS: We characterized the role and mechanism of TMEM215 in EC apoptosis using human umbilical vein endothelial cells by identifying its interacting proteins with immunoprecipitation-mass spectrometry. The physiological function of TMEM215 in ECs was assessed by establishing a conditional knockout mouse strain. The role of TMEM215 in pathological angiogenesis was evaluated by tumor and choroidal neovascularization models. We also tried to evaluate its translational value by delivering a Tmem215 small interfering RNA (siRNA) using nanoparticles in vivo. RESULTS: TMEM215 knockdown in ECs induced apoptotic cell death. We identified the chaperone BiP as a binding partner of TMEM215, and TMEM215 forms a complex with and facilitates the interaction of BiP (binding immunoglobin protein) with the BH (BCL-2 [B-cell lymphoma 2] homology) 3-only proapoptotic protein BIK (BCL-2 interacting killer). TMEM215 knockdown triggered apoptosis in a BIK-dependent way and was abrogated by BCL-2. Notably, TMEM215 knockdown increased the number and diminished the distance of mitochondria-associated endoplasmic reticulum membranes and increased mitochondrial calcium influx. Inhibiting mitochondrial calcium influx by blocking the IP3R (inositol 1,4,5-trisphosphate receptor) or MCU (mitochondrial calcium uniporter) abrogated TMEM215 knockdown-induced apoptosis. TMEM215 expression in ECs was induced by physiological laminar shear stress via EZH2 downregulation. In EC-specific Tmem215 knockout mice, induced Tmem215 depletion impaired the regression of retinal vasculature characterized by reduced vessel density, increased empty basement membrane sleeves, and increased EC apoptosis. Moreover, EC-specific Tmem215 ablation inhibited tumor growth with disrupted vasculature. However, Tmem215 ablation in adult mice attenuated lung metastasis, consistent with reduced Vcam1 expression. Administration of nanoparticles carrying Tmem215 siRNA also inhibited tumor growth and choroidal neovascularization injury. CONCLUSIONS: TMEM215, which is induced by blood flow-derived shear stress via downregulating EZH2, protects ECs from BIK-triggered mitochondrial apoptosis mediated by calcium influx through mitochondria-associated ER membranes during vessel pruning, thus providing a novel target for antiangiogenic therapy.

12.
Front Microbiol ; 14: 1222844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692385

RESUMEN

Aucuba japonica Thunb is an evergreen woody ornamental plant with significant economic and ecological values. It also produces aucubin, showing a variety of biological activities. It is widely planted in the southwest region of China, including karst landscape areas in Guizhou Province. In January 2022, a serious leaf blight disease was observed on the leaves of A. japonica in the outdoor gardens of Guizhou University, Guiyang, Guizhou, China. The causal agent was identified as Colletotrichum aenigma through amplification and sequencing of the internal transcribed spacer (ITS) region, translation of the chitin synthase (CHS) and actin (ACT) genes, and morphological characterizations. Koch's postulates were confirmed by its pathogenicity on healthy leaves, including re-isolation and identification. To our knowledge, this is the first report of C. aenigma causing leaf blight on A. japonica worldwide. To identify pathogen characteristics that could be utilized for future disease management, the effects of temperature and light on mycelial growth, conidia production, and conidial germination, and the effects of humidity on conidial germination were studied. Optimal temperatures for mycelial growth of C. aenigma BY827 were 25-30°C, while 15°C and 35°C were favorable for conidia production. Concurrently, alternating 10-h light and 14-h dark, proved to be beneficial for mycelial growth and conidial germination. Additionally, conidial germination was enhanced at 90% humidity. In vitro screenings of ten chemical pesticides to assess their efficacy in suppressing C. aenigma representative strain BY827. Among them, difenoconazole showed the best inhibition rate, with an EC50 (concentration for 50% of maximal effect) value of 0.0148 µg/ml. Subsequently, field experiment results showed that difenoconazole had the highest control efficiency on A. japonica leaf blight (the decreasing rate of disease incidence and decreasing rate of disease index were 44.60 and 47.75%, respectively). Interestingly, we discovered that C. aenigma BY827 may develop resistance to mancozeb, which is not reported yet among Colletotrichum spp. strains. In conclusion, our study provided new insights into the causal agent of A. japonica leaf blight, and the effective fungicides evaluated provided an important basis and potential resource for the sustainable control of A. japonica leaf blight caused by C. aenigma in the field.

13.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37607001

RESUMEN

Human cancers induce a chaotic, dysfunctional vasculature that promotes tumor growth and blunts most current therapies; however, the mechanisms underlying the induction of a dysfunctional vasculature have been unclear. Here, we show that split end (SPEN), a transcription repressor, coordinates rRNA synthesis in endothelial cells (ECs) and is required for physiological and tumor angiogenesis. SPEN deficiency attenuated EC proliferation and blunted retinal angiogenesis, which was attributed to p53 activation. Furthermore, SPEN knockdown activated p53 by upregulating noncoding promoter RNA (pRNA), which represses rRNA transcription and triggers p53-mediated nucleolar stress. In human cancer biopsies, a low endothelial SPEN level correlated with extended overall survival. In mice, endothelial SPEN deficiency compromised rRNA expression and repressed tumor growth and metastasis by normalizing tumor vessels, and this was abrogated by p53 haploinsufficiency. rRNA gene transcription is driven by RNA polymerase I (RNPI). We found that CX-5461, an RNPI inhibitor, recapitulated the effect of Spen ablation on tumor vessel normalization and combining CX-5461 with cisplatin substantially improved the efficacy of treating tumors in mice. Together, these results demonstrate that SPEN is required for angiogenesis by repressing pRNA to enable rRNA gene transcription and ribosomal biogenesis and that RNPI represents a target for tumor vessel normalization therapy of cancer.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Células Endoteliales/metabolismo , Transcripción Genética , ARN Polimerasa I/genética , Neoplasias/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ARN/genética
14.
J Multidiscip Healthc ; 16: 1905-1914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465015

RESUMEN

Purpose: To clarify the implementation of the admission process under the public crisis of COVID-19 pandemic. Methods: A real-world study was conducted to collect data on the normal and public crisis situations at a tertiary hospital in China and understand the views of 18 head nurses on the necessity of the admission process in public crisis situations. Independent t-test and chi-square test were used to analyze the work data in two situations; Spearman correlation analysis was performed to determine the correlation of work data with two situations of process implementation, and differences between the head nurses' views of necessity of the admission process and actual implementation under public crisis situations were analyzed. Results: Significant differences were observed in the working data between the normal and public crisis situations (P < 0.05), and the implementation of the admission process was not in place. The number of nurses on duty was positively correlated with each item of admission process (P < 0.05), the rest of work data were negatively correlated with each item in the admission process (P < 0.05), and there was a significant difference between the necessity of each item in the admission process and the actual implementation results (P < 0.05). Conclusion: Public crisis leads to the lack of implementation of admission process, and the original admission process and quality control standards are not applicable during the public crisis situation.

15.
Life Sci ; 326: 121828, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270171

RESUMEN

AIM: Under various pathological conditions such as cancer, vascular smooth muscle cells (vSMCs) transit their contractile phenotype into phenotype(s) characterized by proliferation and secretion, a process called vSMC phenotypic transition (vSMC-PT). Notch signaling regulates vSMC development and vSMC-PT. This study aims to elucidate how the Notch signal is regulated. MAIN METHODS: Gene-modified mice with a SM22α-CreERT2 transgene were generated to activate/block Notch signaling in vSMCs. Primary vSMCs and MOVAS cells were cultured in vitro. RNA-seq, qRT-PCR and Western blotting were used to evaluated gene expression level. EdU incorporation, Transwell and collagen gel contraction assays were conducted to determine the proliferation, migration and contraction, respectively. KEY FINDINGS: Notch activation upregulated, while Notch blockade downregulated, miR-342-5p and its host gene Evl in vSMCs. However, miR-342-5p overexpression promoted vSMC-PT as shown by altered gene expression profile, increased migration and proliferation, and decreased contraction, while miR-342-5p blockade exhibited the opposite effects. Moreover, miR-342-5p overexpression significantly suppressed Notch signaling, and Notch activation partially abolished miR-342-5p-induced vSMC-PT. Mechanically, miR-342-5p directly targeted FOXO3, and FOXO3 overexpression rescued miR-342-5p-induced Notch repression and vSMC-PT. In a simulated tumor microenvironment, miR-342-5p was upregulated by tumor cell-derived conditional medium (TCM), and miR-342-5p blockade abrogated TCM-induced vSMC-PT. Meanwhile, conditional medium from miR-342-5p-overexpressing vSMCs significantly enhanced tumor cell proliferation, while miR-342-5p blockade had the opposite effects. Consistently, in a co-inoculation tumor model, miR-342-5p blockade in vSMCs significantly delayed tumor growth. SIGNIFICANCE: miR-342-5p promotes vSMC-PT through a negative-feedback regulation of Notch signaling via downregulating FOXO3, which could be a potential target for cancer therapy.


Asunto(s)
MicroARNs , Ratones , Animales , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Proliferación Celular/genética , Movimiento Celular/genética , Retroalimentación , Fenotipo , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
16.
NPJ Breast Cancer ; 9(1): 36, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160904

RESUMEN

HER2-positive breast cancer patients carrying the germline TSC2 nonsynonymous variant c.4349 C > G (p.Pro1450Arg) are resistant to anti-HER2 therapy. Multi-predictor in silico analysis reveals that this variant is deleterious. We explore the potential mechanism of this TSC2 variant and investigate methods for overcoming anti-HER2 resistance. TSC2 c.4349 C > G reverses the inhibitory effect on mTOR and downstream signaling by increasing TSC2 phosphorylation at Thr1462 and confers significant lapatinib resistance in vitro and in vivo. The combination of lapatinib and the CDK4/6 inhibitor palbociclib inhibits cyclin D1/CDK4/Rb alternative pathway and TSC2 phosphorylation, thereby partially attenuating mTOR activity and inducing TSC2-mutant cell blockage at G1/G0. In in vitro and xenograft models, palbociclib+lapatinib shows higher anti-tumor activity than monotherapy and overcomes the resistance of the TSC2 c.4349 C > G-related variant to anti-HER2 therapy. We reveal a new mechanism of resistance to anti-HER2 therapy and provide a strategy to increase the efficiency of anti-HER2 therapy in HER2-positive breast cancer.

17.
Mol Ther Nucleic Acids ; 32: 343-358, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37128275

RESUMEN

During vascular development, endothelial cells (ECs) undergo arterialization in response to genetic programs and shear stress-triggered mechanotransduction, forming a stable vasculature. Although the Notch receptor is known to sense shear stress and promote EC arterialization, its downstream mechanisms remain unclear. In this study, the Notch downstream miR-342-5p was found to respond to shear stress and promote EC arterialization. Shear stress upregulated miR-342-5p in a Notch-dependent manner in human umbilical vein endothelial cells (HUVECs). miR-342-5p overexpression upregulated the shear stress-associated transcriptomic signature. Moreover, miR-342-5p upregulated arterial markers and promoted EC arterialization in a Matrigel plug assay and retinal angiogenesis model. In contrast, miR-342-5p knockdown downregulated arterial markers, compromised retinal arterialization, and partially abrogated shear stress and Notch activation-induced arterial marker upregulation. Mechanistically, miR-342-5p overexpression suppressed MYC to repress EC proliferation and promote arterialization, achieved by promoting MYC protein degradation by targeting the EYA3. Consistently, EYA3 overexpression rescued miR-342-5p-mediated MYC downregulation and EC arterialization. In vivo, miR-342-5p expression was notably decreased in the ligated artery in a hindlimb ischemia model, and an intramuscular injection of miR-342-5p promoted EC arterialization and improved perfusion. In summary, miR-342-5p, a mechano-miR, mediates the effects of shear stress-activated Notch on EC arterialization and is a potential therapeutic target for ischemic diseases.

18.
Food Chem ; 413: 135428, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758384

RESUMEN

In this work, we firstly found a strong competitive interaction between thiram and silver atoms of DNA-templated silver nanoclusters (DNA-AgNCs), leading to fluorescence quenching of DNA-AgNCs without additional metal ion-mediator. Furthermore, this thiram-induced fluorescence quenching phenomenon was used to develop a sensor for thiram detection. This fluorescence sensor exhibited good linearity with thiram concentration from 0.20 to 2.0 µM and 0.012-0.20 µM under optimized conditions, with a low detection limit of 0.2 µM and 0.01 µM, respectively. Moreover, this sensor showed superior selectivity towards thiram, and its practicability was verified in apples and soil. This study provides a convenient and rapid "mix and detect" approach for thiram detection within 10 min, suggesting its potential for rapid on-site evaluation of thiram in real samples.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Plata , Tiram , Fluorescencia , ADN , Espectrometría de Fluorescencia , Límite de Detección
19.
Curr Opin Psychol ; 49: 101523, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36538871

RESUMEN

Nostalgia, a complex emotion that arises from one's yearnful memories, involves multiple psychological processes. Cognitive neuroscience research has shed light on the neural mechanism of nostalgia as well as its adaptive functions. Nostalgia involves brain regions implicated in self-reflection, autobiographical memory, emotion regulation and reward processing. Also, nostalgia buffers various psychological and physical threats by modulating activities in brain regions implicated in emotion regulatory processing (i.e., both top-down emotion regulation and bottom-up sensory and attention processing) and reward processing. These findings deepen understanding of nostalgia and have implications for its application in clinical situations.


Asunto(s)
Regulación Emocional , Memoria Episódica , Humanos , Encéfalo , Emociones/fisiología , Recompensa
20.
Biochem Biophys Res Commun ; 642: 128-136, 2023 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36577249

RESUMEN

Liver organogenesis is a complex process. Although many signaling pathways and key factors have been identified during liver development, little is known about the regulation of late liver development, especially liver maturation. As a transcriptional repressor, SPEN has been demonstrated to interact with lncRNAs and transcription factors to participate in X chromosome inactivation, neural development, and lymphocyte differentiation. General disruption of SPEN results in embryonic lethality accompanied by hampered liver development in mice. However, the function of SPEN in embryonic liver development has not been reported. In this study, we demonstrate that SPEN is required for hepatocyte maturation using hepatocyte-specific disruption of SPEN with albumin-Cre-mediated knockout. SPEN expression was upregulated in hepatocytes along with liver development in mice. The deletion of the SPEN gene repressed hepatic maturation, mainly by a decrease in hepatic metabolic function and disruption of hepatocyte zonation. Additional experiments revealed that transcription factors which control hepatocyte maturation were strongly downregulated in SPEN-deficient hepatocytes, especially Hnf4α. Furthermore, restoration of Hnf4α levels partially rescued the immature state of hepatocytes caused by SPEN gene deletion. Taken together, these results reveal an unexpected role of SPEN in liver maturation.


Asunto(s)
Factor Nuclear 4 del Hepatocito , Hepatocitos , Ratones , Animales , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...