Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicology ; 504: 153774, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490321

RESUMEN

N-nitrosonornicotine (NNN) and N-nitrosoanabasine (NAB) are both tobacco-specific nitrosamines bearing two heterocyclic amino groups, NAB bearing an extra -CH2- group (conferring a hexa- rather than penta-membered cycle) but with significantly decreased carcinogenicity. However, their activating enzymes and related mutagenicity remain unclear. In this study, the chemical-CYP interaction was analyzed by molecular docking, thus the binding energies and conformations of NNN for human CYP2A6, 2A13, 2B6, 2E1 and 3A4 appeared appropriate as a substrate, so did NAB for human CYP1B1, 2A6, 2A13 and 2E1. The micronucleus test in human hepatoma (HepG2) cells with each compound (62.5-1000 µM) exposing for 48 h (two-cell cycle) was negative, however, pretreatment with bisphenol AF (0.1-100 nM, CYPs inducer) and ethanol (0.2% v:v, CYP2E1 inducer) potentiated micronucleus formation by both compounds, while CITCO (1 µM, CYP2B6 inducer) selectively potentiated that by NNN. In C3A cells (endogenous CYPs enhanced over HepG2) both compounds induced micronucleus, which was abolished by 1-aminobenzotriazole (60 µM, CYPs inhibitor) while unaffected by 8-methoxypsoralen (1 µM, CYP2A inhibitor). Consistently, NNN and NAB induced micronucleus in V79-derived recombinant cell lines expressing human CYP2B6/2E1 and CYP1B1/2E1, respectively, while negative in those expressing other CYPs. By immunofluorescent assay both compounds selectively induced centromere-free micronucleus in C3A cells. In PIG-A assays in HepG2 cells NNN and NAB were weakly positive and simply negative, respectively; however, in C3A cells both compounds significantly induced gene mutations, NNN being slight more potent. Conclusively, both NNN and NAB are mutagenic and clastogenic, depending on metabolic activation by partially different CYP enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Pruebas de Micronúcleos , Nitrosaminas , Humanos , Nitrosaminas/toxicidad , Nitrosaminas/metabolismo , Células Hep G2 , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Simulación del Acoplamiento Molecular , Mutágenos/toxicidad , Nicotiana
2.
Toxics ; 11(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37368596

RESUMEN

The composition of amino acids forming the active site of a CYP enzyme is impactful in its substrate selectivity. For CYP2E1, the role of PHE residues in the formation of effective binding orientations for its aromatic substrates remains unclear. In this study, molecular docking and molecular dynamics analysis were performed to reflect the interactions between PHEs in the active site of human CYP2E1 and various aromatic compounds known as its substrates. The results indicated that the orientation of 1-methylpyrene (1-MP) in the active site was highly determined by the presence of PHEs, PHE478 contributing to the binding free energy most significantly. Moreover, by building a random forest model the relationship between each of 19 molecular descriptors of polychlorinated biphenyl (PCB) compounds (from molecular docking, quantum mechanics, and physicochemical properties) and their human CYP2E1-dependent mutagenicityas established mostly in our lab, was investigated. The presence of PHEs did not appear to significantly modify the electronic or structural feature of each bound ligand (PCB), instead, the flexibility of the conformation of PHEs contributed substantially to the effective binding energy and orientation. It is supposed that PHE residues adjust their own conformation to permit a suitablly shaped cavity for holding the ligand and forming its orientation as favorable for a biochemical reaction. This study has provided some insights into the role of PHEs in guiding the interactive adaptation of the active site of human CYP2E1 for the binding and metabolism of aromatic substrates.

3.
Chem Biol Interact ; 369: 110259, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36372259

RESUMEN

As a new-type flame retardant and toxic substance, triphenyl phosphate (TPP) is a ubiquitous pollutant present even in human blood. TPP is transformed by human CYP enzymes to oxidized/dealkylated metabolites. The impact of TPP metabolism on its toxicity, however, remains unclear. In this study, the genotoxicity of TPP in several mammalian cell lines and its relevance to CYP/sulfortransferase (SULT) activities were investigated. The results indicated that TPP induced micronucleus formation at ≥1 µM concentrations in a human hepatoma (C3A, endogenous CYPs being substantial) cell line, which was abolished by 1-aminobenzotriazole (CYPs inhibitor). In cell line HepG2 (parental to C3A with lower CYP expression) TPP was inactive up to 10 µM, while pretreatment with ethanol (CYP2E1 inducer), PCB 126 (CYP1A inducer), or rifampicin (CYP3A inducer) led to micronucleus formation by TPP. In V79-Mz and V79-derived cells expressing human CYP1A1 TPP was inactive (up to 32 µM), and in cells expressing human CYP1B1, 2B6 and 3A4 it induced micronucleus weakly (positive only at 32 µM). However, TPP induced micronucleus potently in V79-derived cells expressing human CYP1A2, while this effect was drastically reduced by human SULT1A1 co-expression; likewise, TPP was inactive in cells expressing both human CYP2E1 and SULT1A1, but became positive with pentachlorophenol (inhibitor of SULT1) co-exposure. Moreover, in C3A cells TPP selectively induced centromere-free micronucleus (immunofluorescent assay), and TPP increased γ-H2AX (by Western blot, indicating double-strand DNA breaks). In conclusion, this study suggests that TPP is potently clastogenic, human CYP1A2 and 2E1 being major activating enzymes while SULT1A1 involved in detoxification.


Asunto(s)
Citocromo P-450 CYP1A2 , Mutágenos , Cricetinae , Animales , Humanos , Mutágenos/toxicidad , Citocromo P-450 CYP1A2/genética , Cricetulus , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromo P-450 CYP2E1/metabolismo
4.
Toxicology ; 471: 153175, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35395335

RESUMEN

Bisphenol compounds (BPs) are ubiquitously existing pollutants. Recent evidence shows that they may be activated by human CYP1A1 for clastogenic effects; however, factors that influence/mediate CYP1A1-activated 4,4'-(hexafluoroisopropylidene)diphenol (BPAF) toxicity, particularly the aryl hydrocarbon receptor (AhR), sulfotransferase (SULT) 1A1 [known to conjugate 2,2-bis(4-hydroxyphenol)-propane (BPA)] and reactive oxygen species (ROS), remain unclear. In this study, a human hepatoma (HepG2) cell line was genetically engineered for the expression of human CYP1A1 and SULT1A1, producing HepG2-hCYP1A1 and HepG2-hSULT1A1, respectively. They were used in the micronucleus test and γ-H2AX analysis (Western blot) (indicating double-strand DNA breaks) with BPAF; the role of AhR in mediating BPAF toxicity was investigated by coexposure of AhR modulators in HepG2 and its derivative C3A (with no genetic modifications but enhanced CYP expression). The results indicated induction of micronuclei by BPAF (≥ 2.5 µM, for 2-cell cycle) in HepG2-hCYP1A1 and C3A, while inactive in HepG2 and HepG2-hSULT1A1; however, BPAF induced micronuclei in HepG2 pretreated with 3,3',4,4',5-pentachlorobiphenyl (PCB126, AhR activator), and BAY-218 (AhR inhibitor) blocked the effect of BPAF in C3A. In HepG2-hCYP1A1 BPAF selectively induced centromere-free micronuclei (immunofluorescent assay) and double-strand DNA breaks. In HepG2 cells receiving conditional medium from BPAF-HepG2-hCYP1A1 incubation micronuclei were formed, while negative in HepG2-hSULT1A1. Finally, the intracellular levels of ROS, superoxide dismutase and reduced glutathione in C3A and HepG2-hCYP1A1 exposed to BPAF were all moderately increased, while unchanged in HepG2 cells. In conclusion, like other BPs BPAF is activated by human CYP1A1 for potent clastogenicity, and this effect is enhanced by AhR while alleviated by SULT1A1.

5.
Chemosphere ; 291(Pt 1): 132784, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34742755

RESUMEN

Polybrominated biphenyl ethers (PBDEs) are a group of persistent organic pollutants with endocrine-disrupting, neurotoxic, tumorigenic and DNA-damaging activities. They are hydroxylated by human liver microsomal CYP enzymes, however, their mutagenicity remains unknown. In this study, 2,2',4,4'-tetrabromobiphenyl ether (BDE-47, relatively abundant in human tissues) was investigated for micronuclei induction and DNA damage in mammalian cells. The results indicated that BDE-47 up to 80 µM under a 6 h/18 h (exposure/recovery, covering 2 cell cycles) regime did not induce micronuclei in V79-Mz and V79-derived cell lines expressing human CYP1A1 or 1A2, while it was moderately positive in human CYP2B6-, 2E1-and 3A4-expressing cell lines (V79-hCYP2B6, V79-hCYP2E1-hSULT1A1 and V79-hCYP3A4-hOR, respectively). Following 24 h exposure, BDE-47 induced micronuclei in V79-hCYP2E1-hSULT1A1 and V79-hCYP3A4 cells at increased potencies. In the human hepatoma (HepG2) cells BDE-47 (48 h exposure) was inactive up to 40 µM, however, pretreatment of the cells with ethanol (0.2%, v:v, inducer of CYP2E1) or rifampicin (10 µM, inducer of CYP3A4) led to significant micronuclei formation by BDE-47; pretreatment with bisphenol AF (100 nM) also potentiated BDE-47-induced micronuclei formation (which was blocked by a CYP2E1 inhibitor trans-1,2-dichloroethylene or a CYP3A inhibitor (ketoconazole). Immunofluorescent staining of centromere protein B with the micronuclei formed by BDE-47 in HepG2 cells pretreated with ethanol or rifampicin demonstrated selective formation of centromere-containing micronuclei. The increased phosphorylation of both histones H2AX and H3 in HepG2 by BDE-47 also indicated an aneugenic potential. Therefore, this study suggests that BDE-47 is an aneugen activated by several human CYP enzymes.


Asunto(s)
Éter , Éteres Difenilos Halogenados , Animales , Cricetinae , Cricetulus , Daño del ADN , Éteres Difenilos Halogenados/toxicidad , Humanos
6.
Plants (Basel) ; 10(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34834800

RESUMEN

Maize vivipary, precocious seed germination on the ear, affects yield and seed quality. The application of multi-omics approaches, such as transcriptomics or metabolomics, to classic vivipary mutants can potentially reveal the underlying mechanism. Seven maize vivipary mutants were selected for transcriptomic and metabolomic analyses. A suite of transporters and transcription factors were found to be upregulated in all mutants, indicating that their functions are required during seed germination. Moreover, vivipary mutants exhibited a uniform expression pattern of genes related to abscisic acid (ABA) biosynthesis, gibberellin (GA) biosynthesis, and ABA core signaling. NCED4 (Zm00001d007876), which is involved in ABA biosynthesis, was markedly downregulated and GA3ox (Zm00001d039634) was upregulated in all vivipary mutants, indicating antagonism between these two phytohormones. The ABA core signaling components (PYL-ABI1-SnRK2-ABI3) were affected in most of the mutants, but the expression of these genes was not significantly different between the vp8 mutant and wild-type seeds. Metabolomics analysis integrated with co-expression network analysis identified unique metabolites, their corresponding pathways, and the gene networks affected by each individual mutation. Collectively, our multi-omics analyses characterized the transcriptional and metabolic landscape during vivipary, providing a valuable resource for improving seed quality.

7.
Environ Pollut ; 285: 117527, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34380225

RESUMEN

2-Ethylhexyl diphenyl phosphate (EHDPP) is a common flame retardant and environmental pollutant, exposing humans with endocrinal disrupting potentials. Its mutagenicity, especially following metabolism, remains unclear. In this study, molecular docking analysis indicated that EHDPP was a potential substrate for several human CYP enzymes except for CYP1A1. Among V79-derived cell lines genetically engineered for the expression of each CYP, EHDPP (6 h exposure/18 h recovery) did not induce micronuclei in the V79 or V79-derived cells expressing human CYP1A1, however, it was positive in V79-derived cell lines expressing human CYP2E1, 3A4, and 2B6. In a human hepatoma (HepG2) cell line, EHDPP (48 h exposure) moderately induced micronuclei, which was blocked by 1-aminobenzotriazole (ABT, 60 µM, inhibitor of CYPs); pretreating HepG2 cells with bisphenol AF, another organic pollutant as inducer of CYPs (0.1 µM for 16 h), significantly potentiated micronuclei formation by EHDPP, threshold being decreased from 10 to 1.25 µM. This effect was blocked by ABT, drastically reduced by ketoconazole (inhibiting CYP3A expression/activity), and moderately inhibited by trans-1,2-dichloroethylene (selective CYP2E1 inhibitor). Immunofluorescent centromere protein B staining indicated that EHDPP-induced micronuclei in V79-derived cell lines expressing human CYP2E1 and 3A4 were predominantly centromere-negative, and that in HepG2 cells pretreated with bisphenol AF (for inducing multiple CYPs) were purely centromere-negative. In bisphenol AF-pretreated HepG2 cells EHDPP potently induced DNA breaks, as indicated by the comet assay and Western blot analysis of γ-H2AX. In conclusion, our study suggests that EHDPP is potently clastogenic, following activation by several human CYP enzymes, CYP3A4 being a major one.


Asunto(s)
Retardadores de Llama , Mutágenos , Animales , Compuestos de Bifenilo , Línea Celular , Cricetinae , Cricetulus , Retardadores de Llama/toxicidad , Humanos , Simulación del Acoplamiento Molecular , Fosfatos
8.
Environ Sci Technol ; 55(14): 10001-10011, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34241998

RESUMEN

Bisphenol (BP) compounds are endocrine-disrupting organic pollutants. BPs may increase the messenger RNA (mRNA) transcripts of nuclear receptors (NRs) regulating the expression of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes. Their impact on the genotoxicity of metabolically activated carcinogens, however, remains unknown. In this study, effects of the bisphenols A, F, S, and AF on the expression of the aryl hydrocarbon receptor (AhR), the pregnane X receptor (PXR), the constitutive androstane receptor, and individual xenobiotic-metabolizing CYP enzymes in a human hepatoma (HepG2) cell line were investigated, along with in silico binding studies of BPs to each receptor. The results indicated that each BP at 1 to 100 nM concentrations increased the mRNA transcripts and protein levels of AhR, PXR, CYP1A1, 1A2, 1B1, 2E1, and 3A4. The predicted affinities of the BPs for binding AhR were comparable to those of potent agonists. Pretreatment of HepG2 cells with each BP potentiated the induction of micronuclei by benzo[a]pyrene, aflatoxin B1, benzene, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; this effect was abolished/reduced by inhibitors of NRs and/or CYPs. Our study suggests that BPs at human exposure levels may aggravate chromosome damage by several impactful carcinogens in human cells by inducing relevant CYP enzymes, mostly via NR modulation.


Asunto(s)
Carcinógenos/toxicidad , Fenoles/toxicidad , Cromosomas , Sistema Enzimático del Citocromo P-450/genética , Células Hep G2 , Humanos , Receptor X de Pregnano , Receptores de Hidrocarburo de Aril/genética , Xenobióticos
9.
Environ Sci Technol ; 54(23): 15267-15276, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33201683

RESUMEN

Bisphenols (BPs) are environmental pollutants with relevant DNA damage in human population; however, they are generally inactive in standard mutagenicity assays, possibly due to insufficient metabolic activation. In this study, induction of micronuclei and double-strand DNA breaks by BPA, BPF, and BPS in Chinese hamster V79-derived cell lines expressing various human CYP enzymes and a human hepatoma (C3A) (metabolism-proficient) cell line were investigated. Molecular docking of BPs to human CYPs indicated some substrate-enzyme potentials, including CYP1A1 for each compound, which did not induce micronuclei in V79-derived cell lines expressing human CYP1A2, 2E1, or 3A4 but became positive in human CYP1A1-expressing (V79-hCYP1A1) cells. In V79-hCYP1A1 and C3A cells, all compounds induced double-strand DNA breaks and micronuclei formation, which were blocked/significantly attenuated by 1-aminobenzotriazole (CYP inhibitor) or 7-hydroxyflavone (selective CYP1A1 inhibitor). Coexposure of C3A cells to pentachlorophenol (sulfotransferase 1 inhibitor) or ketoconazole (UDP-glucuronosyltransferase 1A inhibitor) potentiated micronuclei induction by each compound, with thresholds lowered from 2.5-5.0 to 0.6-1.2 µM. Immunofluorescence staining of centromere protein B with micronuclei formed in C3A cells by each compound indicated pure clastogenic effects. In conclusion, BPs are potently clastogenic in mammalian cells, which require activation primarily by human CYP1A1 and are negatively modulated by phase II metabolism.


Asunto(s)
Citocromo P-450 CYP1A1 , Mutágenos , Animales , Línea Celular , Cricetinae , Cricetulus , Citocromo P-450 CYP1A1/genética , Daño del ADN , Humanos , Simulación del Acoplamiento Molecular
10.
Chem Biol Interact ; 332: 109283, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33035519

RESUMEN

1-Methylpyrene (1-MP) is a ubiquitous environmental pollutant and rodent carcinogen. Its mutagenic activity depends on sequential activation by various CYP and sulfotransferase (SULT) enzymes. Previously we have observed induction of micronuclei and mitotic arrest by 1-MP in a Chinese hamster (V79)-derived cell line expressing both human CYP1A2 and SULT1A1 (V79-hCYP1A2-hSULT1A1), however, the mode of chromosome damage and the involvement of mitotic tubulin structures have not been clarified. In this study, we used immunofluorescent staining of centromere protein B (CENP-B) with the formed micronuclei, and that of ß- and γ-tubulin reflecting the structures of mitotic spindle and centrioles, respectively, in V79-hCYP1A2-hSULT1A1 cells. The results indicated that 1-MP induced micronuclei in V79-hCYP1A2-hSULT1A1 cells from 0.125 to 2 µM under a 24 h/0 h (exposure/recovery) regime, while in the parental V79-Mz cells micronuclei were induced by 1-MP only at concentrations ≥ 8 µM; in both cases, the micronuclei induced by 1-MP were predominantly CENP-B positive. Following 54 h of exposure, 1-MP induced mitotic spindle non-congression and centrosome amplification (multipolar mitosis) in V79-hCYP1A2-hSULT1A1 cells, and anaphase/telophase retardation, at concentrations ≥ 0.125 µM with concentration-dependence; while in V79-Mz cells it was inactive up to 8 µM. This study suggests that in mammalian cells proficient in activating enzymes 1-MP may induce chromosome loss and mitotic disturbance, probably by interfering with the mitotic spindle and centrioles.


Asunto(s)
Arilsulfotransferasa/metabolismo , Cromosomas de los Mamíferos/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Mitosis/efectos de los fármacos , Pirenos/farmacología , Animales , Línea Celular , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína B del Centrómero/metabolismo , Cricetinae , Humanos , Micronúcleo Germinal/efectos de los fármacos , Micronúcleo Germinal/metabolismo , Índice Mitótico , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo
11.
PLoS One ; 15(2): e0228623, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32084152

RESUMEN

Hepatopancreatic necrosis disease (HPND) is a newly emerging disease in the Chinese mitten crab, Eriocheir sinensis, which has resulted in large economic losses. However, the underlying cause of this disease remains unclear. To better understand the pathogenesis and pathogenic mechanism of HPND, we compared the transcriptome differences of the hepatopancreas of E. sinensis with and without HPND. The analysis yielded > 30 million reads for each sample of three test (with HPND) and three control groups (without HPND). We observed 978 downregulated genes and 644 upregulated genes. Among the gene ontology categories "biological process," "cellular component," and "molecular function", the subcategories cellular process, single-organism process, biological regulation, metabolic process, cell part, organelle, organelle part, binding, and catalytic were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that "metabolism of xenobiotics by cytochrome P450," "drug metabolism-cytochrome P450," "chemical carcinogenesis," and "material metabolism" were the "five" most significantly enriched pathways in the hepatopancreas of E. sinensis with HPND. The results revealed that material metabolic abnormalities and drug effects from the external environment might be associated with HPND in the Chinese mitten crab. Considering the wide use of pyrethroids for pond cleaning in Xinghua city, we speculated that pyrethroids might cause HPND in the Chinese mitten crab. Our study provided useful information about the cause and pathogenetic mechanisms of HPND and could help to prevent this disease in production practice.


Asunto(s)
Braquiuros/genética , Hepatopáncreas/metabolismo , Transcriptoma , Animales , Braquiuros/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/patología , Necrosis , Xenobióticos/metabolismo , Xenobióticos/toxicidad
12.
PLoS One ; 12(9): e0184581, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28910412

RESUMEN

Deltamethrin is an important pesticide widely used against ectoparasites. Deltamethrin contamination has resulted in a threat to the healthy breeding of the Chinese mitten crab, Eriocheir sinensis. In this study, we investigated transcriptional responses in the hepatopancreas of E. sinensis exposed to deltamethrin. We obtained 99,087,448, 89,086,478, and 100,117,958 raw sequence reads from control 1, control 2, and control 3 groups, and 92,094,972, 92,883,894, and 92,500,828 raw sequence reads from test 1, test 2, and test 3 groups, respectively. After filtering and quality checking of the raw sequence reads, our analysis yielded 79,228,354, 72,336,470, 81,859,826, 77,649,400, 77,194,276, and 75,697,016 clean reads with a mean length of 150 bp from the control and test groups. After deltamethrin treatment, a total of 160 and 167 genes were significantly upregulated and downregulated, respectively. Gene ontology terms "biological process," "cellular component," and "molecular function" were enriched with respect to cell killing, cellular process, other organism part, cell part, binding, and catalytic. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes showed that the metabolic pathways were significantly enriched. We found that the CYP450 enzyme system, carboxylesterase, glutathione-S-transferase, and material (including carbohydrate, lipid, protein, and other substances) metabolism played important roles in the metabolism of deltamethrin in the hepatopancreas of E. sinensis. This study revealed differentially expressed genes related to insecticide metabolism and detoxification in E. sinensis for the first time and will help in understanding the toxicity and molecular metabolic mechanisms of deltamethrin in E. sinensis.


Asunto(s)
Braquiuros/genética , Perfilación de la Expresión Génica/métodos , Hepatopáncreas/efectos de los fármacos , Nitrilos/farmacología , Piretrinas/farmacología , Análisis de Secuencia de ARN/métodos , Animales , Braquiuros/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Redes y Vías Metabólicas/efectos de los fármacos
13.
PLoS One ; 12(7): e0179549, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28708867

RESUMEN

Enrofloxacin is the most commonly used antibiotic to control diseases in aquatic animals caused by A. hydrophila. This study conducted de novo transcriptome sequencing and compared the global transcriptomes of enrofloxacin-resistant and enrofloxacin-susceptible strains. We got a total of 4,714 unigenes were assembled. Of these, 4,122 were annotated. A total of 3,280 unigenes were assigned to GO, 3,388 unigenes were classified into Cluster of Orthologous Groups of proteins (COG) using BLAST and BLAST2GO software, and 2,568 were mapped onto pathways using the Kyoto Encyclopedia of Gene and Genomes Pathway database. Furthermore, 218 unigenes were deemed to be DEGs. After enrofloxacin treatment, 135 genes were upregulated and 83 genes were downregulated. The GO terms biological process (126 genes) and metabolic process (136 genes) were the most enriched, and the terms for protein folding, response to stress, and SOS response were also significantly enriched. This study identified enrofloxacin treatment affects multiple biological functions of A. hydrophila. Enrofloxacin resistance in A. hydrophila is closely related to the reduction of intracellular drug accumulation caused by ABC transporters and increased expression of topoisomerase IV.


Asunto(s)
Aeromonas hydrophila/genética , Farmacorresistencia Bacteriana/genética , Fluoroquinolonas/farmacología , Transcriptoma/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Análisis por Conglomerados , Topoisomerasa de ADN IV/genética , Topoisomerasa de ADN IV/metabolismo , Bases de Datos Genéticas , Regulación hacia Abajo/efectos de los fármacos , Enrofloxacina , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Bacteriano/química , ARN Bacteriano/aislamiento & purificación , ARN Bacteriano/metabolismo , Análisis de Secuencia de ARN , Regulación hacia Arriba/efectos de los fármacos
14.
Mitochondrial DNA ; 26(6): 823-4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24409840

RESUMEN

The mitochondrial genome of Mystacoleucus marginatus (Cypriniformes, Cyprinidae) has been sequenced. The total sequence is 16,611 bp in size with 56.67% AT content. It contains 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs and 1 putative control region. The gene content and organization are similar to that of most other vertebrates. Most genes are encoded on the heavy strand except ND6 and eight tRNA genes on light strand. This molecular information will contribute to better understand its evolution and population genetics.


Asunto(s)
Cyprinidae/genética , Genoma Mitocondrial , Animales , Secuencia de Bases , Codón Iniciador/genética , Cyprinidae/clasificación , Datos de Secuencia Molecular , ARN Ribosómico/genética , ARN de Transferencia/genética , Análisis de Secuencia de ADN
17.
Int J Cardiol ; 143(2): e19-20, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-19157607

RESUMEN

A 17-year-old woman with ventricular septal defect and tricuspid straddling valve. There are few reports about these associations in literature. We successfully performed a total correction which consisted of a close of the ventricular septal defect and suspension of straddling tricuspid valve. Ventricular septal defect was closed with a dacron patch and straddling tricuspid valve was suspended into the appropriate ventricle. The postoperative course has been uneventful.


Asunto(s)
Puente de Arteria Coronaria Off-Pump , Defectos del Tabique Interventricular/cirugía , Hipotermia Inducida/métodos , Insuficiencia de la Válvula Tricúspide/cirugía , Válvula Tricúspide/cirugía , Adolescente , Femenino , Defectos del Tabique Interventricular/complicaciones , Humanos , Válvula Tricúspide/anomalías , Insuficiencia de la Válvula Tricúspide/complicaciones
18.
Zhonghua Xin Xue Guan Bing Za Zhi ; 35(12): 1111-5, 2007 Dec.
Artículo en Chino | MEDLINE | ID: mdl-18341811

RESUMEN

OBJECTIVE: To investigate rapid atrial pacing (RAP) induced atrial ultrastructural changes and mRNA and protein expression changes of L-type calcium channel subunits and potassium channel Kv4.3 in a rabbit model. METHODS: Thirty-six rabbits were electrically paced at a frequency of 600 beats/min for durations ranging from 0 - 48 h via bipolar endocardial leads through surgical techniques. Ultrastructural changes of the atrium were observed through a transmission electron microscope (TEM), L-type calcium channel subunits and potassium channel Kv4.3 expressions at mRNA and protein levels were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. RESULTS: Atrial ultrastructure changes characterized by mitochondrial vacuolization, myofilament lysis, and glycogen accumulation were detected obvious at 3 h post pacing. Down-regulated mRNA expression of Ca(2+) channel beta1 and alpha1 subunits was observed 6 h post pacing, Kv4.3 mRNA down-regulation occurred 24 h post pacing, auxiliary subunit alpha2 was not affected by pacing. Protein expression of alpha1c subunit and potassium channel Kv4.3 paralleled their mRNA expression changes. CONCLUSION: RAP induced ultrastructural changes of the atrium and down-regulated mRNA and protein expressions of L-type calcium channel subunits and potassium channel Kv4.3 occurred thereafter in response to intracellular calcium overload induced by RAP.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Estimulación Cardíaca Artificial/métodos , Atrios Cardíacos/metabolismo , Canales de Potasio/metabolismo , Animales , Canales de Calcio Tipo L/genética , Femenino , Atrios Cardíacos/ultraestructura , Masculino , Técnicas de Placa-Clamp , Canales de Potasio/genética , ARN Mensajero/metabolismo , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...