Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem C Mater ; 11(24): 8007-8017, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37362025

RESUMEN

Exposure to environmental factors is generally expected to cause degradation in perovskite films and solar cells. Herein, we show that films with certain defect profiles can display the opposite effect, healing upon exposure to oxygen under illumination. We tune the iodine content of methylammonium lead triiodide perovskite from understoichiometric to overstoichiometric and expose them to oxygen and light prior to the addition of the top layers of the device, thereby examining the defect dependence of their photooxidative response in the absence of storage-related chemical processes. The contrast between the photovoltaic properties of the cells with different defects is stark. Understoichiometric samples indeed degrade, demonstrating performance at 33% of their untreated counterparts, while stoichiometric samples maintain their performance levels. Surprisingly, overstoichiometric samples, which show low current density and strong reverse hysteresis when untreated, heal to maximum performance levels (the same as untreated, stoichiometric samples) upon the photooxidative treatment. A similar, albeit smaller-scale, effect is observed for triple cation and methylammonium-free compositions, demonstrating the general application of this treatment to state-of-the-art compositions. We examine the reasons behind this response by a suite of characterization techniques, finding that the performance changes coincide with microstructural decay at the crystal surface, reorientation of the bulk crystal structure for the understoichiometric cells, and a decrease in the iodine-to-lead ratio of all films. These results indicate that defect engineering is a powerful tool to manipulate the stability of perovskite solar cells.

2.
Small Methods ; 5(10): e2100585, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34927929

RESUMEN

The efficiency of bulk heterojunction (BHJ) based organic solar cells is highly dependent on the morphology of the blend film, which is a result of a fine interplay between donor, acceptor, and solvent during the film drying. In this work, a versatile set-up of in situ spectroscopies is used to follow the morphology evolution during blade coating of three iconic BHJ systems, including polymer:fullerene, polymer:nonfullerene small molecule, and polymer:polymer. the drying and photoluminescence quenching dynamics are systematically study during the film formation of both pristine and BHJ films, which indicate that the component with higher molecular weight dominates the blend film formation and the final morphology. Furthermore, Time-resolved photoluminescence, which is employed for the first time as an in situ method for such drying studies, allows to quantitatively determine the extent of dynamic and static quenching, as well as the relative change of quantum yield during film formation. This work contributes to a fundamental understanding of microstructure formation during the processing of different blend films. The presented setup is considered to be an important tool for the future development of blend inks for solution-cast organic or hybrid electronics.

3.
Nat Commun ; 12(1): 3329, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099662

RESUMEN

Metal halide perovskites are an important class of emerging semiconductors. Their charge carrier dynamics is poorly understood due to limited knowledge of defect physics and charge carrier recombination mechanisms. Nevertheless, classical ABC and Shockley-Read-Hall (SRH) models are ubiquitously applied to perovskites without considering their validity. Herein, an advanced technique mapping photoluminescence quantum yield (PLQY) as a function of both the excitation pulse energy and repetition frequency is developed and employed to examine the validity of these models. While ABC and SRH fail to explain the charge dynamics in a broad range of conditions, the addition of Auger recombination and trapping to the SRH model enables a quantitative fitting of PLQY maps and low-power PL decay kinetics, and extracting trap concentrations and efficacies. However, PL kinetics at high power are too fast and cannot be explained. The proposed PLQY mapping technique is ideal for a comprehensive testing of theories and applicable to any semiconductor.

4.
Inorg Chem ; 60(2): 1045-1054, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33397099

RESUMEN

Low-dimensional hybrid organic-inorganic metal halides have received increased attention because of their outstanding optical and electronic properties. However, the most studied hybrid compounds contain lead and have long-term stability issues, which must be addressed for their use in practical applications. Here, we report a new zero-dimensional hybrid organic-inorganic halide, RInBr4, featuring photoemissive trimethyl(4-stilbenyl)methylammonium (R+) cations and nonemissive InBr4- tetrahedral anions. The crystal structure of RInBr4 is composed of alternating layers of inorganic anions and organic cations along the crystallographic a axis. The resultant hybrid demonstrates bright-blue emission with Commission Internationale de l'Eclairage color coordinates of (0.19, 0.20) and a high photoluminescence quantum yield (PLQY) of 16.36% at room temperature, a 2-fold increase compared to the PLQY of 8.15% measured for the precursor organic salt RBr. On the basis of our optical spectroscopy and computational work, the organic component is responsible for the observed blue emission of the hybrid material. In addition to the enhanced light emission efficiency, the novel hybrid indium bromide demonstrates significantly improved environmental stability. These findings may pave the way for the consideration of hybrid organic In(III) halides for light emission applications.

5.
Nat Commun ; 10(1): 4504, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582747

RESUMEN

Rapid progress in high-speed, densely packed electronic/photonic devices has brought unprecedented benefits to our society. However, this technology trend has in reverse led to a tremendous increase in heat dissipation, which degrades device performance and lifetimes. The scientific and technological challenge henceforth lies in efficient cooling of such high-performance devices. Here, we report on evaporative electron cooling in asymmetric Aluminum Gallium Arsenide/Gallium Arsenide (AlGaAs/GaAs) double barrier heterostructures. Electron temperature, Te, in the quantum well (QW) and that in the electrodes are determined from photoluminescence measurements. At 300 K, Te in the QW is gradually decreased down to 250 K as the bias voltage is increased up to the maximum resonant tunneling condition, whereas Te in the electrode remains unchanged. This behavior is explained in term of the evaporative cooling process and is quantitatively described by the quantum transport theory.

6.
Chem Sci ; 10(28): 6791-6798, 2019 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-31391900

RESUMEN

We present a new example of a mononuclear iron(ii) complex exhibiting a correlated spin-crossover (SCO) transition and strong fluorescence, whose coordination sphere is saturated, for the first time, by six phosphorescent ligands. The interplay between SCO and light emission properties in the thermal region of the spin transition was investigated by means of magnetic, fluorescence, optical absorption and optical microscopy measurements on a single crystal. Overall, the results show an excellent correlation between fluorescence and magnetic data of the present gradual transition, indicating an extreme sensitivity of the optical activity of the ligand to the spin state of the active iron(ii) ions. These results open the way for conceiving new prototypes of pressure and temperature sensors based on this synergy between SCO and luminescence properties. In particular, the fact that cooperative SCO material is not a prerequisite for obtaining such synergetic effects, is useful for the design of thin films or nanoparticles, in which the cooperativity is reduced, for appropriate implementation in nanosized devices to enhance the sensing properties at the nanoscale.

7.
Chemistry ; 25(42): 9875-9884, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31087790

RESUMEN

Perovskite solar cells have recently enabled power conversion efficiency comparable to established technologies such as silicon and cadmium telluride. Ongoing efforts to improve the stability of halide perovskites in ambient air has yielded promising results. However, the presence of toxic heavy element lead (Pb) remains a major concern requiring further attention. Herein, we report three new Pb-free hybrid organic-inorganic perovskite-type halides based on gold (Au), (CH3 NH3 )AuBr4 ⋅H2 O (1), (CH3 NH3 )AuCl4 ⋅H2 O (2), and (CH3 NH3 )AuCl4 (3). Hydrated compounds 1 and 2 crystallize in a brand-new structure type featuring perovskite-derived 2D layers and 1D chains based on pseudo-octahedral AuX6 building blocks. In contrast, the novel crystal structure of the solvent-free compound 3 shows an exotic non-perovskite quasi-2D layered structure containing edge- and corner-shared AuCl6 octahedra. The use of Au metal instead of Pb results in unprecedented low band gaps below 2.5 eV for single-layered metal chlorides and bromides. Moreover, at room temperature the three compounds show a weak blue emission due to the electronic transition between Au-6s and Au-5d, in agreement with the density function theory (DFT) calculation results. These findings are discussed in the context of viability of Au-based halides as alternatives for Pb-based halides for optoelectronic applications.

8.
Inorg Chem ; 58(7): 4446-4455, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30767513

RESUMEN

Replacement of the toxic heavy element lead in metal halide perovskites has been attracting a great interest because the high toxicity and poor air stability are two of the major barriers for their widespread utilization. Recently, mixed-cation double perovskite halides, also known as elpasolites, were proposed as an alternative lead-free candidate for the design of nontoxic perovskite solar cells. Herein, we report a new nontoxic and air stable lead-free all-inorganic semiconductor Rb4Ag2BiBr9 prepared using the mixed-cation approach; however, Rb4Ag2BiBr9 adopts a new structure type (Pearson's code oP32) featuring BiBr6 octahedra and AgBr5 square pyramids that share common edges and corners to form a unique 2D layered non-perovskite structure. Rb4Ag2BiBr9 is also demonstrated to be thermally stable with the measured onset decomposition temperature of To = 520 °C. Optical absorption measurements and density functional theory calculations suggest a nearly direct band gap for Rb4Ag2BiBr9. Room temperature photoluminescence (PL) measurements show a broadband weak emission. Further, temperature-dependent and power-dependent PL measurements show a strong competition between multiple emission centers and suggest the coexistence of defect-bound excitons and self-trapped excitons in Rb4Ag2BiBr9.

9.
ACS Omega ; 3(12): 18791-18802, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458442

RESUMEN

We report syntheses, crystal and electronic structures, and characterization of three new hybrid organic-inorganic halides (R)ZnBr3(DMSO), (R)2CdBr4·DMSO, and (R)CdI3(DMSO) (where (R) = C6(CH3)5CH2N(CH3)3, and DMSO = dimethyl sulfoxide). The compounds can be conveniently prepared as single crystals and bulk polycrystalline powders using a DMSO-methanol solvent system. On the basis of the single-crystal X-ray diffraction results carried out at room temperature and 100 K, all compounds have zero-dimensional (0D) crystal structures featuring alternating layers of bulky organic cations and molecular inorganic anions based on a tetrahedral coordination around group 12 metal cations. The presence of discrete molecular building blocks in the 0D structures results in localized charges and tunable room-temperature light emission, including white light for (R)ZnBr3(DMSO), bluish-white light for (R)2CdBr4·DMSO, and green for (R)CdI3(DMSO). The highest photoluminescence quantum yield (PLQY) value of 3.07% was measured for (R)ZnBr3(DMSO), which emits cold white light based on the calculated correlated color temperature (CCT) of 11,044 K. All compounds exhibit fast photoluminescence lifetimes on the timescale of tens of nanoseconds, consistent with the fast luminescence decay observed in π-conjugated organic molecules. Temperature dependence photoluminescence study showed the appearance of additional peaks around 550 nm, resulting from the organic salt emission. Density functional theory calculations show that the incorporation of both the low-gap aromatic molecule R and the relatively electropositive Zn and Cd metals can lead to exciton localization at the aromatic molecular cations, which act as luminescence centers.

10.
Sci Rep ; 5: 16634, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26568147

RESUMEN

The dynamics of the thermally induced first-order structural phase transition in a high-quality single crystal of the organic-inorganic perovskite (C12H25NH3)2PbI4 was investigated by optical microscopy. The propagation of the straight phase front (habit plane) during the phase transition along the cooling and heating pathways of the thermal hysteresis was observed. The thermochromic character of the transition allowed monitoring of the thermal dependence of average optical density and aided the visualization of the interface propagation. The thermal hysteresis loop is 10 K wide, and the interface velocity is constant at V ≈ 1.6 mm s(-1). The transition is accompanied with sizeable change in crystal size, with elongation of ~6% along the b axis and compression of ~ -2% along the a axis, in excellent agreement with previously reported X-ray diffraction data. The progression of the habit plane is at least 160 times faster than in spin-crossover materials, and opens new prospects for organic-inorganic perovskites as solid switching materials. Moreover, the crystals of (C12H25NH3)2PbI4 are unusually mechanically robust and present excellent resilience to thermal cycling. These hitherto unrecognized properties turn this and possibly similar hybrid perovskites into perspective candidates as active medium for microscopic actuation.

11.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 6): m227-8, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24940210

RESUMEN

In the title compound, [Ni(C3H10N2)3]2[Ni(C3H10N2)2(H2O)2]Br6·2H2O, one Ni(2+) cation, located on an inversion centre, is coordinated by four N atoms from two ligands and by two water O atoms. The other Ni(2+) cation, located in a general position, is coordinated by six N atoms from three ligands. In both cases, the Ni(2+) cation has an octa-hedral coordination environment. The overall structural cohesion is ensured by three types of hydrogen bonds, N-H⋯Br, O-H⋯Br and O-H⋯O, which connect the two types of complex cations, the bromide counter-anions and the lattice water molecules into a three-dimensional network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...