Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38667299

RESUMEN

It has been known for a long time that epileptic seizures provoke brain neuroinflammation involving the activation of microglial cells. However, the role of these cells in this disease context and the consequences of their inflammatory activation on subsequent neuron network activity remain poorly understood so far. To fill this gap of knowledge and gain a better understanding of the role of microglia in the pathophysiology of epilepsy, we used an established zebrafish Dravet syndrome epilepsy model based on Scn1Lab sodium channel loss-of-function, combined with live microglia and neuronal Ca2+ imaging, local field potential (LFP) recording, and genetic microglia ablation. Data showed that microglial cells in scn1Lab-deficient larvae experiencing epileptiform seizures displayed morphological and biochemical changes characteristic of M1-like pro-inflammatory activation; i.e., reduced branching, amoeboid-like morphology, and marked increase in the number of microglia expressing pro-inflammatory cytokine Il1ß. More importantly, LFP recording, Ca2+ imaging, and swimming behavior analysis showed that microglia-depleted scn1Lab-KD larvae displayed an increase in epileptiform seizure-like neuron activation when compared to that seen in scn1Lab-KD individuals with microglia. These findings strongly suggest that despite microglia activation and the synthesis of pro-inflammatory cytokines, these cells provide neuroprotective activities to epileptic neuronal networks, making these cells a promising therapeutic target in epilepsy.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsias Mioclónicas , Microglía , Neuronas , Pez Cebra , Animales , Microglía/metabolismo , Microglía/patología , Epilepsias Mioclónicas/patología , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Interleucina-1beta/metabolismo , Larva , Calcio/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
2.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897817

RESUMEN

Organophosphate (OP) compounds include highly toxic chemicals widely used both as pesticides and as warfare nerve agents. Existing countermeasures are lifesaving, but do not alleviate all long-term neurological sequelae, making OP poisoning a public health concern worldwide and the search for fully efficient antidotes an urgent need. OPs cause irreversible acetylcholinesterase (AChE) inhibition, inducing the so-called cholinergic syndrome characterized by peripheral manifestations and seizures associated with permanent psychomotor deficits. Besides immediate neurotoxicity, recent data have also identified neuroinflammation and microglia activation as two processes that likely play an important, albeit poorly understood, role in the physiopathology of OP intoxication and its long-term consequences. To gain insight into the response of microglia to OP poisoning, we used a previously described model of diisopropylfluorophosphate (DFP) intoxication of zebrafish larvae. This model reproduces almost all the defects seen in poisoned humans and preclinical models, including AChE inhibition, neuronal epileptiform hyperexcitation, and increased neuronal death. Here, we investigated in vivo the consequences of acute DFP exposure on microglia morphology and behaviour, and on the expression of a set of pro- and anti-inflammatory cytokines. We also used a genetic method of microglial ablation to evaluate the role in the OP-induced neuropathology. We first showed that DFP intoxication rapidly induced deep microglial phenotypic remodelling resembling that seen in M1-type activated macrophages and characterized by an amoeboid morphology, reduced branching, and increased mobility. DFP intoxication also caused massive expression of genes encoding pro-inflammatory cytokines Il1ß, Tnfα, Il8, and to a lesser extent, immuno-modulatory cytokine Il4, suggesting complex microglial reprogramming that included neuroinflammatory activities. Finally, microglia-depleted larvae were instrumental in showing that microglia were major actors in DFP-induced neuroinflammation and, more importantly, that OP-induced neuronal hyperactivation was markedly reduced in larvae fully devoid of microglia. DFP poisoning rapidly triggered massive microglia-mediated neuroinflammation, probably as a result of DFP-induced neuronal hyperexcitation, which in turn further exacerbated neuronal activation. Microglia are thus a relevant therapeutic target, and identifying substances reducing microglial activation could add efficacy to existing OP antidote cocktails.


Asunto(s)
Isoflurofato , Intoxicación por Organofosfatos , Acetilcolinesterasa/metabolismo , Animales , Antídotos , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/farmacología , Citocinas/metabolismo , Humanos , Isoflurofato/metabolismo , Isoflurofato/toxicidad , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Intoxicación por Organofosfatos/tratamiento farmacológico , Intoxicación por Organofosfatos/etiología , Intoxicación por Organofosfatos/metabolismo , Organofosfatos/metabolismo , Ratas , Ratas Sprague-Dawley , Pez Cebra/metabolismo
3.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830252

RESUMEN

Succinate dehydrogenase inhibitor (SDHI) fungicides are increasingly used in agriculture to combat molds and fungi, two major threats to both food supply and public health. However, the essential requirement for the succinate dehydrogenase (SDH) complex-the molecular target of SDHIs-in energy metabolism for almost all extant eukaryotes and the lack of species specificity of these fungicides raise concerns about their toxicity toward off-target organisms and, more generally, toward the environment. Herein we review the current knowledge on the toxicity toward zebrafish (Brachydanio rerio) of nine commonly used SDHI fungicides: bixafen, boscalid, fluxapyroxad, flutolanil, isoflucypram, isopyrazam, penthiopyrad, sedaxane, and thifluzamide. The results indicate that these SDHIs cause multiple adverse effects in embryos, larvae/juveniles, and/or adults, sometimes at developmentally relevant concentrations. Adverse effects include developmental toxicity, cardiovascular abnormalities, liver and kidney damage, oxidative stress, energy deficits, changes in metabolism, microcephaly, axon growth defects, apoptosis, and transcriptome changes, suggesting that glycometabolism deficit, oxidative stress, and apoptosis are critical in the toxicity of most of these SDHIs. However, other adverse outcome pathways, possibly involving unsuspected molecular targets, are also suggested. Lastly, we note that because of their recent arrival on the market, the number of studies addressing the toxicity of these compounds is still scant, emphasizing the need to further investigate the toxicity of all SDHIs currently used and to identify their adverse effects and associated modes of action, both alone and in combination with other pesticides.


Asunto(s)
Anomalías Múltiples/inducido químicamente , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Proteínas de Peces/antagonistas & inhibidores , Fungicidas Industriales/toxicidad , Succinato Deshidrogenasa/antagonistas & inhibidores , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Amidas/toxicidad , Anilidas/toxicidad , Animales , Compuestos de Bifenilo/toxicidad , Embrión no Mamífero , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Expresión Génica , Niacinamida/análogos & derivados , Niacinamida/toxicidad , Norbornanos/toxicidad , Pirazoles/toxicidad , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Tiazoles/toxicidad , Tiofenos/toxicidad , Pez Cebra
6.
Sci Rep ; 10(1): 19228, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154418

RESUMEN

With millions of intoxications each year and over 200,000 deaths, organophosphorus (OP) compounds are an important public health issue worldwide. OP poisoning induces cholinergic syndrome, with respiratory distress, hypertension, and neuron damage that may lead to epileptic seizures and permanent cognitive deficits. Existing countermeasures are lifesaving but do not prevent long-lasting neuronal comorbidities, emphasizing the urgent need for animal models to better understand OP neurotoxicity and identify novel antidotes. Here, using diisopropylfluorophosphate (DFP), a prototypic and moderately toxic OP, combined with zebrafish larvae, we first showed that DFP poisoning caused major acetylcholinesterase inhibition, resulting in paralysis and CNS neuron hyperactivation, as indicated by increased neuronal calcium transients and overexpression of the immediate early genes fosab, junBa, npas4b, and atf3. In addition to these epileptiform seizure-like events, DFP-exposed larvae showed increased neuronal apoptosis, which were both partially alleviated by diazepam treatment, suggesting a causal link between neuronal hyperexcitation and cell death. Last, DFP poisoning induced an altered balance of glutamatergic/GABAergic synaptic activity with increased NR2B-NMDA receptor accumulation combined with decreased GAD65/67 and gephyrin protein accumulation. The zebrafish DFP model presented here thus provides important novel insights into the pathophysiology of OP intoxication, making it a promising model to identify novel antidotes.


Asunto(s)
Conducta Animal/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Isoflurofato/toxicidad , Larva/efectos de los fármacos , Neuronas/efectos de los fármacos , Intoxicación por Organofosfatos/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Intoxicación por Organofosfatos/complicaciones , Convulsiones/etiología , Convulsiones/metabolismo , Pez Cebra
7.
Zebrafish ; 17(4): 268-270, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32364833

RESUMEN

In all animal species, oxygen consumption is a key process that is partially impaired in a large number of pathological situations and thus provides informative details on the physiopathology of the disease. In this study, we describe a simple and affordable method to precisely measure oxygen consumption in living zebrafish larvae using a spectrofluorometer and the MitoXpress Xtra Oxygen Consumption Assay. In addition, we used zebrafish larvae treated with mitochondrial respiratory chain inhibitors, antimycin A or rotenone, to verify that our method enables precise and reliable measurements of oxygen consumption.


Asunto(s)
Antimicina A/farmacología , Embrión no Mamífero/metabolismo , Consumo de Oxígeno , Rotenona/farmacología , Pez Cebra/metabolismo , Animales , Larva/metabolismo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo
8.
Front Neurosci ; 13: 1199, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31787873

RESUMEN

Microglial cells, the resident macrophages of the brain, are important players in the pathological process of numerous neurodegenerative disorders, including tauopathies, a heterogeneous class of diseases characterized by intraneuronal Tau aggregates. However, microglia response in Tau pathologies remains poorly understood. Here, we exploit a genetic zebrafish model of tauopathy, combined with live microglia imaging, to investigate the behavior of microglia in vivo in the disease context. Results show that while microglia were almost immobile and displayed long and highly dynamic branches in a wild-type context, in presence of diseased neurons, cells became highly mobile and displayed morphological changes, with highly mobile cell bodies together with fewer and shorter processes. We also imaged, for the first time to our knowledge, the phagocytosis of apoptotic tauopathic neurons by microglia in vivo and observed that microglia engulfed about as twice materials as in controls. Finally, genetic ablation of microglia in zebrafish tauopathy model significantly increased Tau hyperphosphorylation, suggesting that microglia provide neuroprotection to diseased neurons. Our findings demonstrate for the first time the dynamics of microglia in contact with tauopathic neurons in vivo and open perspectives for the real-time study of microglia in many neuronal diseases.

9.
Cells ; 8(10)2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31590334

RESUMEN

Dravet syndrome is a type of severe childhood epilepsy that responds poorly to current anti-epileptic drugs. In recent years, zebrafish disease models with Scn1Lab sodium channel deficiency have been generated to seek novel anti-epileptic drug candidates, some of which are currently undergoing clinical trials. However, the spectrum of neuronal deficits observed following Scn1Lab depletion in zebrafish larvae has not yet been fully explored. To fill this gap and gain a better understanding of the mechanisms underlying neuron hyperexcitation in Scn1Lab-depleted larvae, we analyzed neuron activity in vivo using combined local field potential recording and transient calcium uptake imaging, studied the distribution of excitatory and inhibitory synapses and neurons as well as investigated neuron apoptosis. We found that Scn1Lab-depleted larvae displayed recurrent epileptiform seizure events, associating massive synchronous calcium uptakes and ictal-like local field potential bursts. Scn1Lab-depletion also caused a dramatic shift in the neuronal and synaptic balance toward excitation and increased neuronal death. Our results thus provide in vivo evidence suggesting that Scn1Lab loss of function causes neuron hyperexcitation as the result of disturbed synaptic balance and increased neuronal apoptosis.


Asunto(s)
Apoptosis , Epilepsias Mioclónicas/patología , Epilepsias Mioclónicas/fisiopatología , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Neuronas/patología , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Curr Biol ; 28(12): 1924-1937.e5, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29861134

RESUMEN

Mutations in DEPDC5 are causal factors for a broad spectrum of focal epilepsies, but the underlying pathogenic mechanisms are still largely unknown. To address this question, a zebrafish depdc5 knockout model showing spontaneous epileptiform events in the brain, increased drug-induced seizure susceptibility, general hypoactivity, premature death at 2-3 weeks post-fertilization, as well as the expected hyperactivation of mTOR signaling was developed. Using this model, the role of DEPDC5 in brain development was investigated using an unbiased whole-transcriptomic approach. Surprisingly, in addition to mTOR-associated genes, many genes involved in synaptic function, neurogenesis, axonogenesis, and GABA network activity were found to be dysregulated in larval brains. Although no gross defects in brain morphology or neuron loss were observed, immunostaining of depdc5-/- brains for several GABAergic markers revealed specific defects in the fine branching of the GABAergic network. Consistently, some defects in depdc5-/- could be compensated for by treatment with GABA, corroborating that GABA signaling is indeed involved in DEPDC5 pathogenicity. Further, the mTOR-independent nature of these neurodevelopmental defects was demonstrated by the inability of rapamycin to rescue the GABAergic network defects observed in depdc5-/- brains and, conversely, the inability of GABA to rescue the hypoactivity in another genetic model showing mTOR hyperactivation. This study hence provides the first in vivo evidence that DEPDC5 plays previously unknown roles apart from its canonical function as an mTOR inhibitor. Moreover, these results propose that defective neurodevelopment of GABAergic networks could be a key factor in epileptogenesis when DEPDC5 is mutated.


Asunto(s)
Epilepsias Parciales/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteínas de Pez Cebra/antagonistas & inhibidores , Pez Cebra/genética , Animales , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación con Pérdida de Función , Sirolimus/farmacología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Transl Neurodegener ; 7: 6, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29568517

RESUMEN

Background: Tauopathies comprise a family of neurodegenerative disorders including Alzheimer's disease for which there is an urgent and unmet need for disease-modifying treatments. Tauopathies are characterized by pathological tau hyperphosphorylation, which has been shown to correlate tightly with disease progression and memory loss in patients suffering from Alzheimer's disease. We recently demonstrated an essential requirement for 3-O-sulfated heparan sulfate in pathological tau hyperphosphorylation in zebrafish, a prominent model organism for human drug discovery. Here, we investigated whether in vivo treatment with surfen or its derivatives oxalyl surfen and hemisurfen, small molecules with heparan sulfate antagonist properties, could mitigate tau hyperphosphorylation and neuronal deficits in a zebrafish model of tauopathies. Results: In vivo treatment of Tg[HuC::hTauP301L; DsRed] embryos for 2 days with surfen or oxalyl surfen significantly reduced the accumulation of the pThr181 tau phospho-epitope measured by ELISA by 30% and 51%, respectively. Western blot analysis also showed a significant decrease of pThr181 and pSer396/pSer404 in embryos treated with surfen or oxalyl surfen. Immunohistochemical analysis further confirmed that treatment with surfen or oxalyl surfen significantly decreased the AT8 tau epitope in spinal motoneurons. In addition, in vivo treatment of Tg[HuC::hTauP301L; DsRed] embryos with surfen or oxalyl surfen significantly rescued spinal motoneuron axon-branching defects and, as a likely consequence, the impaired stereotypical touch-evoked escape response. Importantly, treatment with hemisurfen, a surfen derivative devoid of heparan sulfate antagonist activity, does not affect tau hyperphosphorylation, nor neuronal or behavioural deficits in Tg[HuC::hTauP301L; DsRed] embryos. Conclusion: Our findings demonstrate for the first time that surfen, a well-tolerated molecule in clinical settings, and its derivative, oxalyl surfen, could mitigate or delay neuronal defects in tauopathies, including Alzheimer's disease.

12.
J Clin Med ; 6(6)2017 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-28594349

RESUMEN

In the last ten years, the use of fluorescent probes developed to measure oxygen has resulted in several marketed devices, some unreasonably expensive and with little flexibility. We have explored the use of the effective, versatile, and inexpensive Redflash technology to determine oxygen uptake by a number of different biological samples using various layouts. This technology relies on the use of an optic fiber equipped at its tip with a membrane coated with a fluorescent dye (www.pyro-science.com). This oxygen-sensitive dye uses red light excitation and lifetime detection in the near infrared. So far, the use of this technology has mostly been used to determine oxygen concentration in open spaces for environmental studies, especially in aquatic media. The oxygen uptake determined by the device can be easily assessed in small volumes of respiration medium and combined with the measurement of additional parameters, such as lactate excretion by intact cells or the membrane potential of purified mitochondria. We conclude that the performance of by this technology should make it a first choice in the context of both fundamental studies and investigations for respiratory chain deficiencies in human samples.

14.
Brain ; 138(Pt 5): 1339-54, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25842390

RESUMEN

Heparan sulphate (glucosamine) 3-O-sulphotransferase 2 (HS3ST2, also known as 3OST2) is an enzyme predominantly expressed in neurons wherein it generates rare 3-O-sulphated domains of unknown functions in heparan sulphates. In Alzheimer's disease, heparan sulphates accumulate at the intracellular level in disease neurons where they co-localize with the neurofibrillary pathology, while they persist at the neuronal cell membrane in normal brain. However, it is unknown whether HS3ST2 and its 3-O-sulphated heparan sulphate products are involved in the mechanisms leading to the abnormal phosphorylation of tau in Alzheimer's disease and related tauopathies. Here, we first measured the transcript levels of all human heparan sulphate sulphotransferases in hippocampus of Alzheimer's disease (n = 8; 76.8 ± 3.5 years old) and found increased expression of HS3ST2 (P < 0.001) compared with control brain (n = 8; 67.8 ± 2.9 years old). Then, to investigate whether the membrane-associated 3-O-sulphated heparan sulphates translocate to the intracellular level under pathological conditions, we used two cell models of tauopathy in neuro-differentiated SH-SY5Y cells: a tau mutation-dependent model in cells expressing human tau carrying the P301L mutation hTau(P301L), and a tau mutation-independent model in where tau hyperphosphorylation is induced by oxidative stress. Confocal microscopy, fluorescence resonance energy transfer, and western blot analyses showed that 3-O-sulphated heparan sulphates can be internalized into cells where they interact with tau, promoting its abnormal phosphorylation, but not that of p38 or NF-κB p65. We showed, in vitro, that the 3-O-sulphated heparan sulphates bind to tau, but not to GSK3B, protein kinase A or protein phosphatase 2, inducing its abnormal phosphorylation. Finally, we demonstrated in a zebrafish model of tauopathy expressing the hTau(P301L), that inhibiting hs3st2 (also known as 3ost2) expression results in a strong inhibition of the abnormally phosphorylated tau epitopes in brain and in spinal cord, leading to a complete recovery of motor neuronal axons length (n = 25; P < 0.005) and of the animal motor response to touching stimuli (n = 150; P < 0.005). Our findings indicate that HS3ST2 centrally participates to the molecular mechanisms leading the abnormal phosphorylation of tau. By interacting with tau at the intracellular level, the 3-O-sulphated heparan sulphates produced by HS3ST2 might act as molecular chaperones allowing the abnormal phosphorylation of tau. We propose HS3ST2 as a novel therapeutic target for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Sulfotransferasas/metabolismo , Proteínas tau/metabolismo , Animales , Conducta Animal , Células Cultivadas , Humanos , FN-kappa B/metabolismo , Fosforilación , Tauopatías/metabolismo
15.
Nat Commun ; 4: 2821, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24281726

RESUMEN

The modulation of developmental biochemical pathways by mechanical cues is an emerging feature of animal development, but its evolutionary origins have not been explored. Here we show that a common mechanosensitive pathway involving ß-catenin specifies early mesodermal identity at gastrulation in zebrafish and Drosophila. Mechanical strains developed by zebrafish epiboly and Drosophila mesoderm invagination trigger the phosphorylation of ß-catenin-tyrosine-667. This leads to the release of ß-catenin into the cytoplasm and nucleus, where it triggers and maintains, respectively, the expression of zebrafish brachyury orthologue notail and of Drosophila Twist, both crucial transcription factors for early mesoderm identity. The role of the ß-catenin mechanosensitive pathway in mesoderm identity has been conserved over the large evolutionary distance separating zebrafish and Drosophila. This suggests mesoderm mechanical induction dating back to at least the last bilaterian common ancestor more than 570 million years ago, the period during which mesoderm is thought to have emerged.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Evolución Biológica , Proteínas de Drosophila/metabolismo , Mecanotransducción Celular , Mesodermo/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , beta Catenina/metabolismo , Animales , Secuencia Conservada/fisiología , Drosophila , Femenino , Proteínas Fetales , Masculino , Mecanotransducción Celular/fisiología , Transducción de Señal/fisiología , Proteínas de Dominio T Box/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Pez Cebra
16.
Hum Mol Genet ; 22(13): 2652-61, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23466526

RESUMEN

Mowat-Wilson syndrome (MWS) is a severe intellectual disability (ID)-distinctive facial gestalt-multiple congenital anomaly syndrome, commonly associating microcephaly, epilepsy, corpus callosum agenesis, conotruncal heart defects, urogenital malformations and Hirschsprung disease (HSCR). MWS is caused by de novo heterozygous mutations in the ZEB2 gene. The majority of mutations lead to haplo-insufficiency through premature stop codons or large gene deletions. Only three missense mutations have been reported so far; none of which resides in a known functional domain of ZEB2. In this study, we report and analyze the functional consequences of three novel missense mutations, p.Tyr1055Cys, p.Ser1071Pro and p.His1045Arg, identified in the highly conserved C-zinc-finger (C-ZF) domain of ZEB2. Patients' phenotype included the facial gestalt of MWS and moderate ID, but no microcephaly, heart defects or HSCR. In vitro studies showed that all the three mutations prevented binding and repression of the E-cadherin promoter, a characterized ZEB2 target gene. Taking advantage of the zebrafish morphant technology, we performed rescue experiments using wild-type (WT) and mutant human ZEB2 mRNAs. Variable, mutation-dependent, embryo rescue, correlating with the severity of patients' phenotype, was observed. Our data provide evidence that these missense mutations cause a partial loss of function of ZEB2, suggesting that its role is not restricted to repression of E-cadherin. Functional domains other than C-ZF may play a role in early embryonic development. Finally, these findings broaden the clinical spectrum of ZEB2 mutations, indicating that MWS ought to be considered in patients with lesser degrees of ID and a suggestive facial gestalt, even in the absence of congenital malformation.


Asunto(s)
Alelos , Enfermedad de Hirschsprung/genética , Proteínas de Homeodominio/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Mutación Missense , Proteínas Represoras/genética , Secuencia de Aminoácidos , Animales , Línea Celular , ADN/metabolismo , Modelos Animales de Enfermedad , Facies , Femenino , Orden Génico , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Datos de Secuencia Molecular , Fenotipo , Unión Proteica , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Transcripción Genética , Pez Cebra , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Dedos de Zinc/genética
17.
PLoS One ; 7(11): e50705, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226359

RESUMEN

The expansion of a polyglutamine (polyQ) tract in the N-terminal region of ataxin-7 (atxn7) is the causative event in spinocerebellar ataxia type 7 (SCA7), an autosomal dominant neurodegenerative disorder mainly characterized by progressive, selective loss of rod-cone photoreceptors and cerebellar Purkinje and granule cells. The molecular and cellular processes underlying this restricted neuronal vulnerability, which contrasts with the broad expression pattern of atxn7, remains one of the most enigmatic features of SCA7, and more generally of all polyQ disorders. To gain insight into this specific neuronal vulnerability and achieve a better understanding of atxn7 function, we carried out a functional analysis of this protein in the teleost fish Danio rerio. We characterized the zebrafish atxn7 gene and its transcription pattern, and by making use of morpholino-oligonucleotide-mediated gene inactivation, we analysed the phenotypes induced following mild or severe zebrafish atxn7 depletion. Severe or nearly complete zebrafish atxn7 loss-of-function markedly impaired embryonic development, leading to both early embryonic lethality and severely deformed embryos. More importantly, in relation to SCA7, moderate depletion of the protein specifically, albeit partially, prevented the differentiation of both retina photoreceptors and cerebellar Purkinje and granule cells. In addition, [1-232] human atxn7 fragment rescued these phenotypes showing strong function conservation of this protein through evolution. The specific requirement for zebrafish atxn7 in the proper differentiation of cerebellar neurons provides, to our knowledge, the first in vivo evidence of a direct functional relationship between atxn7 and the differentiation of Purkinje and granule cells, the most crucial neurons affected in SCA7 and most other polyQ-mediated SCAs. These findings further suggest that altered protein function may play a role in the pathophysiology of the disease, an important step toward the development of future therapeutic strategies.


Asunto(s)
Diferenciación Celular , Cerebelo/citología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Células Fotorreceptoras de Vertebrados/citología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Ataxina-7 , Diferenciación Celular/efectos de los fármacos , Cerebelo/efectos de los fármacos , Cerebelo/embriología , Desarrollo Embrionario/efectos de los fármacos , Humanos , Músculos/embriología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Médula Espinal/embriología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
18.
Neurobiol Dis ; 48(3): 299-308, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22801083

RESUMEN

Hereditary spastic paraplegias (HSPs) are rare neurological conditions caused by degeneration of the long axons of the cerebrospinal tracts, leading to locomotor impairment and additional neurological symptoms. There are more than 40 different causative genes, 24 of which have been identified, including SPG11 and SPG15 mutated in complex clinical forms. Since the vast majority of the causative mutations lead to loss of function of the corresponding proteins, we made use of morpholino-oligonucleotide (MO)-mediated gene knock-down to generate zebrafish models of both SPG11 and SPG15 and determine how invalidation of the causative genes (zspg11 and zspg15) during development might contribute to the disease. Micro-injection of MOs targeting each gene caused locomotor impairment and abnormal branching of spinal cord motor neurons at the neuromuscular junction. More severe phenotypes with abnormal tail developments were also seen. Moreover, partial depletion of both proteins at sub-phenotypic levels resulted in the same phenotypes, suggesting for the first time, in vivo, a genetic interaction between these genes. In conclusion, the zebrafish orthologues of the SPG11 and SPG15 genes are important for proper development of the axons of spinal motor neurons and likely act in a common pathway to promote their proper path finding towards the neuromuscular junction.


Asunto(s)
Axones/metabolismo , Neuronas Motoras/metabolismo , Neurogénesis/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proteínas Portadoras/metabolismo , Embrión no Mamífero , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Pez Cebra/metabolismo
19.
Semin Fetal Neonatal Med ; 16(4): 175-80, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21640674

RESUMEN

Reviewing the recent literature on the role of mitochondria during fetal development paradoxically reveals two features: the importance of mitochondria in these early developmental phases, and the scarcity of information available for humans. Indeed, most of the available information on the role of mitochondria during development comes from studies of animal models that do not necessarily strictly apply to humans. In this paper, we attempted to collect information existing on humans, together with data from animal studies essentially presented as corroboration. This makes clear that a complex interacting network of energetic, genetic and epigenetic factors governs the impact of mitochondrial function on early development in humans. This complexity presumably also accounts for our poor understanding of the consequences of impaired mitochondrial function on prenatal development, or conversely, of the impact of development on the expression of such deficiencies.


Asunto(s)
Transporte de Electrón/fisiología , Desarrollo Fetal/fisiología , Mitocondrias/fisiología , Epigénesis Genética , Humanos , Lactante , Recién Nacido
20.
J Neurotrauma ; 27(5): 959-72, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20102264

RESUMEN

Prokineticin 2 (PROK2) is a secreted protein that regulates diverse biological processes including olfactory bulb neurogenesis in adult mammals. However, its precise role in this process is as yet not fully understood. Because it is well known that adult teleost fish, including zebrafish, display an intense proliferative activity in several brain regions, we took advantage of this feature to analyze the distribution of PROK2 transcripts in the adult zebrafish brain and during injury-induced telencephalon (TC) regeneration. First, we characterized the zebrafish PROK2 gene and showed that its transcription takes place in almost all proliferating areas previously identified in adult zebrafish brain. Moreover, in TC, PROK2 transcription was mainly restricted to neurons. Next, using a novel model of TC injury in adult zebrafish, we observed that TC lesion induced a dramatic increase in cell proliferation within the injured hemisphere in regions located both adjacent and distal to injury sites. Moreover, our data strongly suggest that cell proliferation was followed by the migration of newly generated neurons toward injury sites. In addition, we observed a transient over-expression of PROK2 transcripts, which was detected in cells surrounding the lesion during the very first days post injury, and, a few days later, in broad cell rows extending from cortical regions of the TC toward injury sites. PROK2 over-expression was no longer detected when the regeneration process was close to completion, showing that ectopic PROK2 transcription paralleled neuronal regeneration. Taken together, our results suggest that in adult zebrafish brain, PROK2 may play a role in both constitutive and injury-induced neurogenesis.


Asunto(s)
Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/terapia , Regeneración Nerviosa/genética , Neuropéptidos/biosíntesis , Telencéfalo/metabolismo , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/metabolismo , Animales , Biomarcadores/metabolismo , Lesiones Encefálicas/fisiopatología , Movimiento Celular/genética , Proliferación Celular , Modelos Animales de Enfermedad , Neurogénesis/genética , Plasticidad Neuronal/genética , Neuropéptidos/genética , Neuropéptidos/fisiología , Recuperación de la Función/genética , Telencéfalo/patología , Telencéfalo/fisiopatología , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...