Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Clin Med ; 13(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38398465

RESUMEN

The umbilical cord blood (UCB) donated in public UCB banks is a source of hematopoietic stem cells (HSC) alternative to bone marrow for allogeneic HSC transplantation (HSCT). However, the high rejection rate of the donated units due to the strict acceptance criteria and the wide application of the haploidentical HSCT have resulted in significant limitation of the use of UCB and difficulties in the economic sustainability of the public UCB banks. There is an ongoing effort within the UCB community to optimize the use of UCB in the field of HSCT and a parallel interest in exploring the use of UCB for applications beyond HSCT i.e., in the fields of cell therapy, regenerative medicine and specialized transfusion medicine. In this report, we describe the mode of operation of the three public UCB banks in Greece as an example of an orchestrated effort to develop a viable UCB banking system by (a) prioritizing the enrichment of the national inventory by high-quality UCB units from populations with rare human leukocyte antigens (HLA), and (b) deploying novel sustainable applications of UCB beyond HSCT, through national and international collaborations. The Greek paradigm of the public UCB network may become an example for countries, particularly with high HLA heterogeneity, with public UCB banks facing sustainability difficulties and adds value to the international efforts aiming to sustainably expand the public UCB banking system.

3.
Cancers (Basel) ; 15(24)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38136421

RESUMEN

Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.

4.
Vaccines (Basel) ; 11(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38006002

RESUMEN

BACKGROUND: Renal transplant recipients (RTRs) tend to mount weaker immune responses to vaccinations, including vaccines against the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Humoral immunity was assessed using anti-receptor binding domain (RBD) and neutralizing antibodies (NAb) serum levels measured by ELISA, and cellular immunity was assessed using T-, B-, NK, natural killer-like T (NKT)-cell subpopulations, and monocytes measured by flow cytometry, and also specific T-cell immunity, at predefined time points after BNT162b2 vaccination, in 57 adult RTRs. RESULTS: Administration of three booster doses was necessary to achieve anti-RBD and NAb protective levels in almost all patients (92.98%). Ab production, at several time points, was positively correlated with the corresponding renal function and inversely correlated with hemodialysis vintage (HDV) and treatment with mycophenolic acid (MPA). A gradual rise in several cell subpopulations, including total lymphocytes (p = 0.026), memory B cells (p = 0.028), activated CD4 (p = 0.005), and CD8 cells (p = 0.001), was observed even after the third vaccination dose, while a significant reduction in CD3+PD1+ (p = 0.002), NKT (p = 0.011), and activated NKT cells (p = 0.034) was noted during the same time interval. Moreover, SARS-CoV-2-specific T-cells were present in 41% of the patients who were unable to develop Nabs, and their positivity rates four months after the second dose were in inverse correlation with monocytes (p = 0.045) and NKT cells (p = 0.01). CONCLUSIONS: SARS-CoV-2-specific T-cell responses preceded the humoral ones, while two booster doses were needed for this group of immunocompromised patients to mount a protective immune response.

5.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003218

RESUMEN

Post-transplant lymphoproliferative disease (PTLD) is a fatal complication of hematopoietic cell transplantation (HCT) associated with the Epstein-Barr virus (EBV). Multiple factors such as transplant type, graft-versus-host disease (GVHD), human leukocyte antigens (HLA) mismatch, patient age, and T-lymphocyte-depleting treatments increase the risk of PTLD. EBV reactivation in hematopoietic cell transplant recipients is monitored through periodic quantitative polymerase chain reaction (Q-PCR) tests. However, substantial uncertainty persists regarding the clinically significant EBV levels for these patients. Guidelines recommend initiating EBV monitoring no later than four weeks post-HCT and conducting it weekly. Pre-emptive therapies, such as the reduction of immunosuppressive therapy and the administration of rituximab to treat EBV viral loads are also suggested. In this study, we investigated the occurrence of EBV-PTLD in 546 HCT recipients, focusing on the clinical manifestations and risk factors associated with the disease. We managed to identify 67,150 viral genomic copies/mL as the cutoff point for predicting PTLD, with 80% sensitivity and specificity. Among our cohort, only 1% of the patients presented PTLD. Anti-thymocyte globulin (ATG) and GVHD were independently associated with lower survival rates and higher treatment-related mortality. According to our findings, prophylactic measures including regular monitoring, pre-emptive therapy, and supportive treatment against infections can be effective in preventing EBV-related complications. This study also recommends conducting EBV monitoring at regular intervals, initiating pre-emptive therapy when viral load increases, and identifying factors that increase the risk of PTLD. Our study stresses the importance of frequent and careful follow-ups of post-transplant complications and early intervention in order to improve survival rates and reduce mortality.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Trastornos Linfoproliferativos , Humanos , Rituximab/uso terapéutico , Herpesvirus Humano 4/fisiología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Incidencia , Trastornos Linfoproliferativos/tratamiento farmacológico , Trastornos Linfoproliferativos/etiología , Enfermedad Injerto contra Huésped/etiología , Carga Viral , ADN Viral/genética , Estudios Retrospectivos
6.
BMC Genom Data ; 24(1): 70, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986041

RESUMEN

Complex disorders are caused by a combination of genetic, environmental and lifestyle factors, and their prevalence can vary greatly across different populations. The extent to which genetic risk, as identified by Genome Wide Association Study (GWAS), correlates to disease prevalence in different populations has not been investigated systematically. Here, we studied 14 different complex disorders and explored whether polygenic risk scores (PRS) based on current GWAS correlate to disease prevalence within Europe and around the world. A clear variation in GWAS-based genetic risk was observed based on ancestry and we identified populations that have a higher genetic liability for developing certain disorders. We found that for four out of the 14 studied disorders, PRS significantly correlates to disease prevalence within Europe. We also found significant correlations between worldwide disease prevalence and PRS for eight of the studied disorders with Multiple Sclerosis genetic risk having the highest correlation to disease prevalence. Based on current GWAS results, the across population differences in genetic risk for certain disorders can potentially be used to understand differences in disease prevalence and identify populations with the highest genetic liability. The study highlights both the limitations of PRS based on current GWAS but also the fact that in some cases, PRS may already have high predictive power. This could be due to the genetic architecture of specific disorders or increased GWAS power in some cases.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Prevalencia , Factores de Riesgo , Herencia Multifactorial/genética
7.
Vaccines (Basel) ; 11(10)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37896986

RESUMEN

BACKGROUND AND AIM: Immune status profile can predict response to vaccination, while lymphocyte phenotypic alterations represent its effectiveness. We prospectively evaluated these parameters in kidney transplant recipients (KTRs) regarding Tozinameran (BNT162b2) vaccination. METHOD: In this prospective monocenter observational study, 39 adult KTRs, on stable immunosuppression, naïve to COVID-19, with no protective humoral response after two Tozinameran doses, received the third vaccination dose, and, based on their immunity activation, they were classified as responders or non-responders. Humoral and cellular immunities were assessed at predefined time points (T0: 48 h before the first, T1: 48 h prior to the third and T2: three weeks after the third dose). RESULTS: Responders, compared to non-responders, had a higher total and transitional B-lymphocyte count at baseline (96.5 (93) vs. 51 (52)cells/µL, p: 0.045 and 9 (17) vs. 1 (2)cells/µL, p: 0.031, respectively). In the responder group, there was a significant increase, from T0 to T1, in the concentrations of activated CD4+ (from 6.5 (4) to 10.08 (11)cells/µL, p: 0.001) and CD8+ (from 8 (19) to 14.76 (16)cells/µL, p: 0.004) and a drop in CD3+PD1+ T-cells (from 130 (121) to 30.44 (25)cells/µL, p: 0.001), while naïve and transitional B-cells increased from T1 to T2 (from 57.55 (66) to 1149.3 (680)cells/µL, p < 0.001 and from 1.4 (3) to 17.5 (21)cells/µL, p: 0.003). The percentages of memory and marginal zone B-lymphocytes, and activated CD4+, CD8+ and natural killer (NK) T-cells significantly increased, while those of naïve B-cells and CD3+PD1+ T-cells reduced from T0 to T1. CONCLUSIONS: Responders and non-responders to the third BNT162b2 dose demonstrated distinct initial immune cell profiles and changes in cellular subpopulation composition following vaccination.

8.
Front Immunol ; 14: 1235661, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37828996

RESUMEN

Regulatory T cells (Tregs) are essential mediators of tolerance mitigating aberrant immune responses. While naturally occurring Treg (nTreg) development and function are directed by epigenetic events, induced Treg (iTreg) identity and mechanisms of action remain elusive. Mirroring the epigenetic circuits of nTregs, we and others have used hypomethylation agents (HAs) to ex vivo convert T cells into iTregs (HA-iTregs) and further showed that the suppressive properties of the HA-iTregs are predominantly confined in an emergent population, which de novo expresses the immunomodulatory molecule HLA-G, consequently providing a surface marker for isolation of the suppressive HA-iTreg compartment (G+ cells). We isolated the HA-induced G+ cells and their G- counterparts and employed high-throughput RNA-sequencing (RNA-seq) analyses to uncover the G+-specific transcriptomic changes guiding T cells toward a regulatory trajectory upon their exposure to HA. We found a distinct transcriptional upregulation of G+ cells accompanied by enrichment of immune-response-related pathways. Although single-cell RNA-seq profiling revealed regulatory G+ cells to have molecular features akin to nTregs, when assessed in conjunction with the comparative transcriptomic analysis and profiling of secreted cytokines against the non-suppressive G- cells, FOXP3 and other T-helper signatures appear to play a minor role in their suppressive phenotype. We found an ectopic expression of IDO-1 and CCL17/22 in G+ cells, denoting that in vitro exposure of T cells to HA may well unlock myeloid suppressor genes. This report provides transcriptional data shaping the molecular identity of a highly purified and potent HA-iTreg population and hints toward ectopic myeloid-specific molecular mechanisms mediating HA-iTreg function.


Asunto(s)
Linfocitos T Reguladores , Transcriptoma , Diferenciación Celular , Citocinas/metabolismo , Metilación de ADN
9.
Cancers (Basel) ; 15(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37444639

RESUMEN

(1) Background: Autologous, allogeneic hematopoietic cell transplantation (HCT) and other cellular therapies, including CAR T cell and gene therapy, constitute a cornerstone in the management of various benign and malignant hematological disorders. Invasive fungal infections (IFD) remain a significant cause of morbidity and mortality in HCT recipients. Therefore, we investigated the prevalence and risk factors of IFD following HCT and other cellular therapies in an era of novel antifungal prophylaxis. (2) Methods: In this study, we retrospectively enrolled adult HCT recipients who were treated at our JACIE-accredited center according to standard operating procedures over the last decade (2013-2022). (3) Results: 950 patients who received cellular therapies were studied. None of the 19 CAR T cell and neither of the two gene therapy recipients developed IFD whereas 3/456 autologous HCT recipients who suffered from primary refractory/relapsed lymphomas presented with probable IFD. Overall, 11 patients who received allogeneic HCT experienced probable IFD, possible IFD was found in 31/473, and IFD was proven in 10/473. A second IFD episode was present in three patients. Four-year OS was significantly lower in proven compared to probable IFD (p = 0.041) and was independently associated with HCT-CI (p = 0.040) and chronic GVHD (p = 0.045). (4) Conclusions: In this real-world cohort, the prevalence of proven and probable IFD in an era of novel antifungal prophylaxis was found to be relatively low. However, IFDs were associated with poor outcomes for patients who received allogeneic HCT.

10.
Nat Med ; 29(8): 2019-2029, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460756

RESUMEN

Despite advances, few therapeutics have shown efficacy in severe coronavirus disease 2019 (COVID-19). In a different context, virus-specific T cells have proven safe and effective. We conducted a randomized (2:1), open-label, phase 1/2 trial to evaluate the safety and efficacy of off-the-shelf, partially human leukocyte antigen (HLA)-matched, convalescent donor-derived severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells (CoV-2-STs) in combination with standard of care (SoC) in patients with severe COVID-19 compared to SoC during Delta variant predominance. After a dose-escalated phase 1 safety study, 90 participants were randomized to receive CoV-2-ST+SoC (n = 60) or SoC only (n = 30). The co-primary objectives of the study were the composite of time to recovery and 30-d recovery rate and the in vivo expansion of CoV-2-STs in patients receiving CoV-2-ST+SoC over SoC. The key secondary objective was survival on day 60. CoV-2-ST+SoC treatment was safe and well tolerated. The study met the primary composite endpoint (CoV-2-ST+SoC versus SoC: recovery rate 65% versus 38%, P = 0.017; median recovery time 11 d versus not reached, P = 0.052, respectively; rate ratio for recovery 1.71 (95% confidence interval 1.03-2.83, P = 0.036)) and the co-primary objective of significant CoV-2-ST expansion compared to SοC (CoV-2-ST+SoC versus SoC, P = 0.047). Overall, in hospitalized patients with severe COVID-19, adoptive immunotherapy with CoV-2-STs was feasible and safe. Larger trials are needed to strengthen the preliminary evidence of clinical benefit in severe COVID-19. EudraCT identifier: 2021-001022-22 .


Asunto(s)
COVID-19 , Humanos , COVID-19/terapia , SARS-CoV-2 , Inmunoterapia Adoptiva/efectos adversos , Tratamiento Basado en Trasplante de Células y Tejidos , Resultado del Tratamiento
11.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298481

RESUMEN

Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the ß-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic ß- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with ß-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in HBG1/HBG2 promoters or/and in the erythroid enhancer of BCL11A to increase HbF expression as an alternative curative approach for ß-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies.


Asunto(s)
Anemia de Células Falciformes , Hemoglobinopatías , Talasemia beta , Humanos , Sistemas CRISPR-Cas , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Hemoglobinopatías/genética , Hemoglobinopatías/terapia , Edición Génica/métodos , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Anemia de Células Falciformes/metabolismo , gamma-Globinas/genética , gamma-Globinas/metabolismo , Talasemia beta/genética , Talasemia beta/terapia , Talasemia beta/metabolismo
12.
Front Med (Lausanne) ; 10: 1166871, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275377

RESUMEN

Regulatory T-cell (Treg) immunotherapy has emerged as a promising and highly effective strategy to combat graft-versus-host disease (GvHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Both naturally occurring Treg and induced Treg populations have been successfully evaluated in trials illustrating the feasibility, safety, and efficacy required for clinical translation. Using a non-mobilized leukapheresis, we have developed a good manufacturing practice (GMP)-compatible induced Treg product, termed iG-Tregs, that is enriched in cells expressing the potent immunosuppressive human leucocyte antigen-G molecule (HLA-G+). To assess the safety and the maximum tolerable dose (MTD) of iG-Tregs, we conduct a phase I-II, two-center, interventional, dose escalation (3 + 3 design), open-label study in adult patients undergoing allo-HCT from an HLA-matched sibling donor, which serves also as the donor for iG-Treg manufacturing. Herein, we present the clinical protocol with a detailed description of the study rationale and design as well as thoroughly explain every step from patient screening, product manufacturing, infusion, and participant follow-up to data collection, management, and analysis (registered EUDRACT-2021-006367-26).

13.
Cancers (Basel) ; 15(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37046597

RESUMEN

T-cell-based, personalized immunotherapy can nowadays be considered the mainstream treatment for certain blood cancers, with a high potential for expanding indications. Chimeric antigen receptor T cells (CAR-Ts), an ex vivo genetically modified T-cell therapy product redirected to target an antigen of interest, have achieved unforeseen successes in patients with B-cell hematologic malignancies. Frequently, however, CAR-T cell therapies fail to provide durable responses while they have met with only limited success in treating solid cancers because unique, unaddressed challenges, including poor persistence, impaired trafficking to the tumor, and site penetration through a hostile microenvironment, impede their efficacy. Increasing evidence suggests that CAR-Ts' in vivo performance is associated with T-cell intrinsic features that may be epigenetically altered or dysregulated. In this review, we focus on the impact of epigenetic regulation on T-cell differentiation, exhaustion, and tumor infiltration and discuss how epigenetic reprogramming may enhance CAR-Ts' memory phenotype, trafficking, and fitness, contributing to the development of a new generation of potent CAR-T immunotherapies.

14.
Biol Psychiatry ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36738982

RESUMEN

BACKGROUND: Tourette syndrome (TS) is a childhood-onset neurodevelopmental disorder of complex genetic architecture and is characterized by multiple motor tics and at least one vocal tic persisting for more than 1 year. METHODS: We performed a genome-wide meta-analysis integrating a novel TS cohort with previously published data, resulting in a sample size of 6133 individuals with TS and 13,565 ancestry-matched control participants. RESULTS: We identified a genome-wide significant locus on chromosome 5q15. Integration of expression quantitative trait locus, Hi-C (high-throughput chromosome conformation capture), and genome-wide association study data implicated the NR2F1 gene and associated long noncoding RNAs within the 5q15 locus. Heritability partitioning identified statistically significant enrichment in brain tissue histone marks, while polygenic risk scoring of brain volume data identified statistically significant associations with right and left thalamus volumes and right putamen volume. CONCLUSIONS: Our work presents novel insights into the neurobiology of TS, thereby opening up new directions for future studies.

15.
Blood ; 141(17): 2085-2099, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36800642

RESUMEN

Sickle cell disease (SCD) is a monogenic disease caused by a nucleotide mutation in the ß-globin gene. Current gene therapy studies are mainly focused on lentiviral vector-mediated gene addition or CRISPR/Cas9-mediated fetal globin reactivation, leaving the root cause unfixed. We developed a vectorized prime editing system that can directly repair the SCD mutation in hematopoietic stem cells (HSCs) in vivo in a SCD mouse model (CD46/Townes mice). Our approach involved a single intravenous injection of a nonintegrating, prime editor-expressing viral vector into mobilized CD46/Townes mice and low-dose drug selection in vivo. This procedure resulted in the correction of ∼40% of ßS alleles in HSCs. On average, 43% of sickle hemoglobin was replaced by adult hemoglobin, thereby greatly mitigating the SCD phenotypes. Transplantation in secondary recipients demonstrated that long-term repopulating HSCs were edited. Highly efficient target site editing was achieved with minimal generation of insertions and deletions and no detectable off-target editing. Because of its simplicity and portability, our in vivo prime editing approach has the potential for application in resource-poor countries where SCD is prevalent.


Asunto(s)
Anemia de Células Falciformes , Edición Génica , Ratones , Animales , Edición Génica/métodos , Sistemas CRISPR-Cas , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Células Madre Hematopoyéticas , Hemoglobina Falciforme/genética
16.
Hemasphere ; 7(1): e809, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36698615

RESUMEN

Adoptive immunotherapy with virus-specific cytotoxic T cells (VSTs) has evolved over the last three decades as a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after solid organ or allogeneic hematopoietic cell-transplantation (allo-HCT). Since the early proof-of-principle studies demonstrating that seropositive donor-derived T cells, specific for the commonest pathogens post transplantation, namely cytomegalovirus or Epstein-Barr virus (EBV) and generated by time- and labor-intensive protocols, could effectively control viral infections, major breakthroughs have then streamlined the manufacturing process of pathogen-specific T cells (pSTs), broadened the breadth of target recognition to even include novel emerging pathogens and enabled off-the-shelf administration or pathogen-naive donor pST production. We herein review the journey of evolution of adoptive immunotherapy with nonengineered, natural pSTs against infections and virus-associated malignancies in the transplant setting and briefly touch upon recent achievements using pSTs outside this context.

17.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203404

RESUMEN

Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) and graft-versus-host disease (GvHD) represent life-threatening syndromes after allogeneic hematopoietic stem cell transplantation (allo-HSCT). In both conditions, endothelial dysfunction is a common denominator, and development of relevant biomarkers is of high importance for both diagnosis and prognosis. Despite the fact that soluble urokinase plasminogen activator receptor (suPAR) and growth differentiation factor-15 (GDF-15) have been determined as endothelial injury indices in various clinical settings, their role in HSCT-related complications remains unexplored. In this context, we used immunoenzymatic methods to measure suPAR and GDF-15 levels in HSCT-TMA, acute and/or chronic GVHD, control HSCT recipients, and apparently healthy individuals of similar age and gender. We found considerably greater SuPAR and GDF-15 levels in HSCT-TMA and GVHD patients compared to allo-HSCT and healthy patients. Both GDF-15 and suPAR concentrations were linked to EASIX at day 100 and last follow-up. SuPAR was associated with creatinine and platelets at day 100 and last follow-up, while GDF-15 was associated only with platelets, suggesting that laboratory values do not drive EASIX. SuPAR, but not GDF-15, was related to soluble C5b-9 levels, a sign of increased HSCT-TMA risk. Our study shows for the first time that suPAR and GDF-15 indicate endothelial damage in allo-HSCT recipients. Rigorous validation of these biomarkers in many cohorts may provide utility for their usefulness in identifying and stratifying allo-HSCT recipients with endothelial cell impairment.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Microangiopatías Trombóticas , Adulto , Humanos , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Factor 15 de Diferenciación de Crecimiento , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad Injerto contra Huésped/etiología , Biomarcadores
18.
Genes (Basel) ; 13(12)2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36553489

RESUMEN

The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Células Madre Hematopoyéticas , Terapia Genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción
19.
Proc Natl Acad Sci U S A ; 119(41): e2205272119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191217

RESUMEN

Trade and colonization caused an unprecedented increase in Mediterranean human mobility in the first millennium BCE. Often seen as a dividing force, warfare is in fact another catalyst of culture contact. We provide insight into the demographic dynamics of ancient warfare by reporting genome-wide data from fifth-century soldiers who fought for the army of the Greek Sicilian colony of Himera, along with representatives of the civilian population, nearby indigenous settlements, and 96 present-day individuals from Italy and Greece. Unlike the rest of the sample, many soldiers had ancestral origins in northern Europe, the Steppe, and the Caucasus. Integrating genetic, archaeological, isotopic, and historical data, these results illustrate the significant role mercenaries played in ancient Greek armies and highlight how participation in war contributed to continental-scale human mobility in the Classical world.


Asunto(s)
Arqueología , Personal Militar , Arqueología/métodos , Europa (Continente) , Grecia , Historia Antigua , Humanos , Guerra
20.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36006707

RESUMEN

Individuals with ß-thalassemia or sickle cell disease and hereditary persistence of fetal hemoglobin (HPFH) possessing 30% fetal hemoglobin (HbF) appear to be symptom free. Here, we used a nonintegrating HDAd5/35++ vector expressing a highly efficient and accurate version of an adenine base editor (ABE8e) to install, in vivo, a -113 A>G HPFH mutation in the γ-globin promoters in healthy CD46/ß-YAC mice carrying the human ß-globin locus. Our in vivo hematopoietic stem cell (HSC) editing/selection strategy involves only s.c. and i.v. injections and does not require myeloablation and HSC transplantation. In vivo HSC base editing in CD46/ß-YAC mice resulted in > 60% -113 A>G conversion, with 30% γ-globin of ß-globin expressed in 70% of erythrocytes. Importantly, no off-target editing at sites predicted by CIRCLE-Seq or in silico was detected. Furthermore, no critical alterations in the transcriptome of in vivo edited mice were found by RNA-Seq. In vitro, in HSCs from ß-thalassemia and patients with sickle cell disease, transduction with the base editor vector mediated efficient -113 A>G conversion and reactivation of γ-globin expression with subsequent phenotypic correction of erythroid cells. Because our in vivo base editing strategy is safe and technically simple, it has the potential for clinical application in developing countries where hemoglobinopathies are prevalent.


Asunto(s)
Anemia de Células Falciformes , Hemoglobinopatías , Talasemia beta , Adenina , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Animales , Sistemas CRISPR-Cas , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Edición Génica/métodos , Hemoglobinopatías/genética , Hemoglobinopatías/terapia , Humanos , Ratones , Globinas beta/genética , Talasemia beta/genética , Talasemia beta/terapia , gamma-Globinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...