Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Plant Cell ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735686

RESUMEN

Increasing grain yield is a major goal of breeders due to the rising global demand for food. We previously reported that the miR397-LACCASE (OsLAC) module regulates brassinosteroid (BR) signaling and grain yield in rice (Oryza sativa). However, the precise roles of laccase enzymes in the BR pathway remain unclear. Here, we report that OsLAC controls grain yield by preventing the turnover of TRANSTHYRETIN-LIKE (OsTTL), a negative regulator of BR signaling. Overexpressing OsTTL decreased BR sensitivity in rice, while loss-of-function of OsTTL led to enhanced BR signaling and increased grain yield. OsLAC directly binds to OsTTL and regulates its phosphorylation-mediated turnover. The phosphorylation site Ser226 of OsTTL is essential for its ubiquitination and degradation. Overexpressing the dephosphorylation-mimic form of OsTTL (OsTTLS226A) resulted in more severe defects than did overexpressing OsTTL. These findings provide insight into the role of an ancient laccase in BR signaling and suggest that the OsLAC-OsTTL module could serve as a target for improving grain yield.

2.
Plant Physiol ; 194(4): 2101-2116, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37995372

RESUMEN

The precise timing of flowering plays a pivotal role in ensuring successful plant reproduction and seed production. This process is intricately governed by complex genetic networks that integrate internal and external signals. This study delved into the regulatory function of microRNA397 (miR397) and its target gene LACCASE-15 (OsLAC15) in modulating flowering traits in rice (Oryza sativa). Overexpression of miR397 led to earlier heading dates, decreased number of leaves on the main stem, and accelerated differentiation of the spikelet meristem. Conversely, overexpression of OsLAC15 resulted in delayed flowering and prolonged vegetative growth. Through biochemical and physiological assays, we uncovered that miR397-OsLAC15 had a profound impact on carbohydrate accumulation and photosynthetic assimilation, consequently enhancing the photosynthetic intensity in miR397-overexpressing rice plants. Notably, we identified that OsLAC15 is at least partially localized within the peroxisome organelle, where it regulates the photorespiration pathway. Moreover, we observed that a high CO2 concentration could rescue the late flowering phenotype in OsLAC15-overexpressing plants. These findings shed valuable insights into the regulatory mechanisms of miR397-OsLAC15 in rice flowering and provided potential strategies for developing crop varieties with early flowering and high-yield traits through genetic breeding.


Asunto(s)
Oryza , Oryza/metabolismo , Flores/fisiología , Fitomejoramiento , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Reproducción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Radiol Case Rep ; 19(2): 825-830, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38111550

RESUMEN

This study presents a rare case of an older woman with an intracranial mesenchymal tumor in the right frontal and parietal lobes. Despite prompt surgical intervention, her condition rapidly deteriorated because of tumor dissemination, leading to her demise. We highlight the tumor's marked invasiveness and heterogeneity, coupled with a propensity for distant systemic metastasis, which negatively impacted the patient's prognosis. This particular clinical behavior had not been previously reported, making this a novel observation. Thus, through a comprehensive review of relevant literature, we aim to provide valuable insights for further understanding, diagnosing, and treating such tumors.

4.
Cancer Innov ; 2(4): 265-282, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38089746

RESUMEN

Background: Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Tumor marker (TM) detection can indicate the existence and growth of a tumor and has therefore been used extensively for diagnosing LC. Here, we conducted a bibliometric analysis to examine TM-related publications for LC diagnosis to illustrate the current state and future trends of this field, as well as to identify additional promising TMs with high sensitivity. Methods: Publications regarding TMs in LC diagnosis were downloaded from the Web of Science Core Collection. CiteSpace was applied to perform a bibliometric analysis of journals, cocitation authors, keywords, and references related to this field. VOSviewer was used to generate concise diagrams about countries, institutions, authors, and keywords. Changes in the TM research frontier were analyzed through citation burst detection. Results: A total of 990 studies were analyzed in this work. The collaboration network analysis revealed that the People's Republic of China, Yonsei University, and Molina R were the most productive country, institution, and scholar, respectively. Additionally, Molina R was the author with the most citations. The National Natural Science Foundation of China was the largest funding source. "Carcinoembryonic antigen (CEA) as tumor marker in lung cancer" was the top reference with the most citations, Lung Cancer was the core journal, and "serum tumor marker" experienced a citation burst over the past 5 years. Conclusion: This bibliometric analysis of TMs in LC diagnosis presents the current trends and frontiers in this field. We summarized the research status of this field and the methods to improve the diagnostic efficacy of traditional serum TMs, as well as provided new directions and ideas for improving the LC clinical detection rate. Priority should be given to the transformation of computer-assisted diagnostic technology for clinical applications. In addition, circulating tumor cells, exosomes, and microRNAs were the current most cutting-edge TMs.

5.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117201

RESUMEN

In this paper, a kind of tightly coupled array (TCA) with time-domain beam scan is developed for the radiation of high-power ultrawideband (UWB) electromagnetic pulses, and the peak-power pattern is proposed to characterize the directivity. First, the active voltage standing wave ratio (AVSWR) bandwidth of the TCA is optimized, which is the precondition for the beam scan. It indicates that the lower-cutoff frequency (LCF) is inversely proportional to the total length of the whole array; an increase in the distance between the array and the ground plane could remarkably reduce the LCF; and an increase in the element number can also decrease the LCF because of the increase in length, but more elements would make the center elements difficult to match in the low-frequency range, so there is a limitation on the number of elements for a certain LCF. Based on these results, a six-element linear array is designed. Then, the definition of the peak-power pattern is proposed to characterize the directivity of the UWB pulsed antenna. Finally, the optimized six-element array is developed, and the measured working band is 276 MHz-6.4 GHz (AVSWR < 3). The effective potential gain is 1.76, and it improves by 51.7% with a reduction in the aperture area by 68.4% compared with the previous TCA, which means that the aperture efficiency is remarkably improved. The half-power beam width of the developed TCA with the scan angle of 0° is 45°. The time-domain beam scan could be performed with time-delay feeding lines, and the maximum scan angle is over ±30° in the E-plane. The developed TCA can be applied for the generation of high-power electromagnetic environments for the study of intentional electromagnetic interference.

6.
Genes (Basel) ; 14(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38136936

RESUMEN

Noncoding RNAs constitute a substantial portion of the transcriptome and play pivotal roles in plant growth and development. Among these processes, flowering stands out as a crucial trait, ensuring reproductive success and seed set, and is meticulously controlled by genetic and environmental factors. With remarkable advancements in the identification and characterization of noncoding RNAs in plants, it has become evident that noncoding RNAs are intricately linked to the regulation of flowering time. In this article, we present an overview of the classification of plant noncoding RNAs and delve into their functions in the regulation of flowering time. Furthermore, we review their molecular mechanisms and their involvement in flowering pathways. Our comprehensive review enhances the understanding of how noncoding RNAs contribute to the regulation of flowering time and sheds light on their potential implications in crop breeding.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Fitomejoramiento , Transcriptoma , ARN no Traducido
7.
JACS Au ; 3(12): 3462-3472, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38155649

RESUMEN

Enriching the palette of high-performance fluorescent dyes is vital to support the frontier of biomedical imaging. Although various rhodamine skeletons remain the premier type of small-molecule fluorophores due to the apparent high brightness and flexible modifiability, they still suffer from the inherent defect of small Stokes shift due to the nonideal fluorescence imaging signal-to-background ratio. Especially, the rising class of fluorescent dyes, sulfone-substituted xanthone, exhibits great potential, but low chemical stability is also pointed out as the problem. Molecular engineering of sulfone-xanthone to obtain a large Stokes shift and high stability is highly desired, but it is still scarce. Herein, we present the combination modification method for optimizing the performance of sulfone-xanthone. These redesigned fluorescent skeletons owned greatly improved stability and Stokes shift compared with the parent sulfone-rhodamine. To the proof of bioimaging capacity, annexin protein-targeted peptide LS301 was introduced to the most promising dyes, J-S-ARh, to form the tumor-targeted fluorescent probe, J-S-LS301. The resulting probe, J-S-LS301, can be an outstanding fluorescence tool for the orthotopic transplantation tumor model of hepatocellular carcinoma imaging and on-site pathological analysis. In summary, the combination method could serve as a basis for rational optimization of sulfone-xanthone. Overall, the chemistry reported here broadens the scope of accessible sulfone-xanthone functionality and, in turn, enables to facilitate the translation of biomedical research toward the clinical domain.

8.
PLoS One ; 18(11): e0277353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38019817

RESUMEN

This paper presents a mechanical analysis of the foundation of a temporary offshore platform using a temporary embedded eight-leg support structure. The model is simulated using the finite element simulation software MIDAS-3D, with the modified RANS equation and Forchheimer saturated resistance model used to control the fluid. The stress analysis principle of the structure is simplified by the pile group theory. The stability of the eight-legged supporting structure is investigated under different embedding depths, pile diameters, wave periods, and amplitudes of the main piles. The results show that the eight-legged supporting structure can intercept and divert water flow, eliminating the impact of the water flow on the main piles during large waves. Additionally, as the diameter of the structure increases under the same wave conditions, the influence of the base volume and surface curvature gradually increases, deteriorating the stress environment of the main pile and decreasing the supporting effect of the eight-legged support structure. Numerical calculations of the seabed rock foundation of the eight-leg supporting structure show that the shallow pile foundation undergoes significant deformation, while the eight-leg supporting structure is still supported by the dead weight of the main pile.


Asunto(s)
Modelos Teóricos , Programas Informáticos , Simulación por Computador , Agua
9.
aBIOTECH ; 4(3): 238-256, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37970469

RESUMEN

Small peptides represent a subset of dark matter in plant proteomes. Through differential expression patterns and modes of action, small peptides act as important regulators of plant growth and development. Over the past 20 years, many small peptides have been identified due to technical advances in genome sequencing, bioinformatics, and chemical biology. In this article, we summarize the classification of plant small peptides and experimental strategies used to identify them as well as their potential use in agronomic breeding. We review the biological functions and molecular mechanisms of small peptides in plants, discuss current problems in small peptide research and highlight future research directions in this field. Our review provides crucial insight into small peptides in plants and will contribute to a better understanding of their potential roles in biotechnology and agriculture.

10.
Plants (Basel) ; 12(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37896023

RESUMEN

Primula filchnerae, an endangered plant endemic to China, has drawn people's attention in recent years due to its ornamental value in flower. It was rarely recorded since being described in 1902, but it was rediscovered in 2009 and is now known from a limited number of sites located in Hubei and Shaanxi Provinces. Since the species is still poorly known, a number of unanswered questions arise related to it: How has P. filchnerae responded to past climate change and how might it respond in the future? Why was P. filchmerae so rarely collected during the past century? We assembled geographic coordinates for P. filchnerae through the field surveys and website searches, and then used a maximum entropy model (MaxEnt) to simulate its potential suitable distribution in six periods with varied carbon emission levels by combining bioclimatic and environmental factors. MaxEnt showed that Min Temperature of the Coldest Month (bio6) and Precipitation of the Coldest Quarter (bio19) affected P. filchnerae's distribution most, with an aggregate contribution >60% and suitable ranges above -5 °C and below 40 mm, respectively. We also analyzed potential habitat distribution in various periods with differing impacts of climate change compared to today's suitable habitats, and in most cases, Shaanxi and Sichuan remained the most stable areas and with possible expansion to the north under various carbon emission scenarios, but the 2050s SSP5-8.5 scenario may be an exception. Moreover, we used MaxEnt to evaluate population shifts, with various scenarios indicating that geometric center would be concentrated in Sichuan Province in China. Finally, conservation strategies are suggested, including the creation of protected areas, long-term monitoring, raising public awareness of plant conservation, situ conservation measures, assisted migration, and species introduction. This study demonstrates how P. filchnerae may have adapted to changes in different periods and provides a scientific basis for germplasm conservation and management.

11.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37882669

RESUMEN

Pulsed x-rays are crucial for various applications such as radiography, biological effects, and the system-generated electromagnetic pulse effect. X rays with a higher dose rate and a higher total dose can generate more significant radiation effects and more effective radiography. However, most pulsed sub-100 keV x-ray systems with high dose rates operate in the single pulse mode with limited total dose, and most repetitive pulsed x-ray systems have a low dose rate. This paper develops a compact high-current repetitive pulsed x-ray system with a low-impedance diode to generate high dose rate pulsed x-rays with an average energy below 100 keV. A diode with a double-ring cathode is designed and tested to produce uniform pulsed x-rays. In order to investigate the x-ray intensity and the pulse number of repetitions for different anode thicknesses, five typical thicknesses are tested. The experimental results show that this system can operate stably at a repetitive rate of 0.2 Hz with a peak voltage of about 200 kV and a peak current of about 100 kA. The dose rate is about 2.4 × 105 Gy(LiF)/s, and the average x-ray energy is about 55 keV with the 40 µm thick tantalum anode. The x-ray uniformity is better than 2:1 over the measuring plane.

12.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2259-2266, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37681390

RESUMEN

For intensive aquaculture in freshwater ponds, microcystin (MC-LR) generated from cyanobacterial blooms is one of the bottlenecks for the healthy and sustainable development of shrimp aquaculture industry. In this study, we measured the MC-LR content in the hepatopancreas and muscles of Litopenaeus vannamei stressed by MC-LR, and analyzed protein expression in the hepatopancreas using DIA high-throughput proteomics technology. The results showed that MC-LR content in the hepatopancreas and muscles reached the highest at 1 h after MC-LR injection, which was (6.12±0.45) µg·kg-1 and (5.00±0.19) µg·kg-1, respectively. Then, it decreased gra-dually, with that in the hepatopancreas being significantly higher than in muscles. We identified 820 differential expressed proteins, including 586 up-regulated and 234 down-regulated ones. Results of bioinformatics analysis showed that MC-LR stress significantly affected immune-related pathways such as lysosome, RIG-Ⅰ receptor signals and interleukin-2. It also altered energy metabolisms including citrate cycle, metabolism of starch and sucrose, and interconversion of pentose and glucoronate, which in turn led to the disorder of carbohydrate metabolism. In addition, MC-LR significantly upregulated 19 cytoskeleton-related blood shadow proteins and damaged the hepatopancreas cytoskeleton. It was concluded that MC-LR mainly affected the physiological processes associated with immunity, energy metabolism, and cytoskeleton in the hepatopancreas of L. vannamei.


Asunto(s)
Hepatopáncreas , Penaeidae , Animales , Microcistinas , Músculos , Acuicultura
14.
Drug Des Devel Ther ; 17: 1889-1906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397788

RESUMEN

Introduction: Anaplastic thyroid carcinoma (ATC) is the most lethal thyroid carcinoma. Doxorubicin (DOX) is the only drug approved for anaplastic thyroid cancer treatment, but its clinical use is restricted due to irreversible tissue toxicity. Berberine (BER), an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been proposed to have antitumor activity in many cancers. However, the underlying mechanisms by which BER regulates apoptosis and autophagy in ATC remain unclear. Thus, the present study aimed to assess the therapeutic effect of BER in human ATC cell lines CAL-62 and BHT-101 as well as the underlying mechanisms. In addition, we assessed the antitumor effects of a combination of BER and DOX in ATC cells. Methods: The cell viability of CAL-62 and BTH-101 with treatment of BER for different hours was measured by CCK-8 assay, and cell apoptosis was assessed by clone formation assay and flow cytometric analysis. The protein levels of apoptosis protein, autophagy-related proteins and PI3K/AKT/mTORpathway were determined Using Western blot. Autophagy in cells was observed with GFP-LC3 plasmid using confocal fluorescent microscopy. Flow cytometry was used to detect intracellular ROS. Results: The present results showed that BER significantly inhibited cell growth and induced apoptosis in ATC cells. BER treatment also significantly upregulated the expression of LC3B-II and increased the number of GFP-LC3 puncta in ATC cells. Inhibition of autophagy by 3-methyladenine (3-MA) suppressed BER-induced autophagic cell death. Moreover, BER induced the generation of reactive oxygen species (ROS). Mechanistically, we demonstrated that BER regulated the autophagy and apoptosis of human ATC cells through the PI3K/AKT/mTOR pathways. Furthermore, BER and DOX cooperated to promote apoptosis and autophagy in ATC cells. Conclusion: Taken together, the present findings indicated that BER induces apoptosis and autophagic cell death by activating ROS and regulating the PI3K/AKT/mTOR signaling pathway.


Asunto(s)
Berberina , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Berberina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Apoptosis , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología , Autofagia
15.
ACS Sens ; 8(6): 2359-2367, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37265237

RESUMEN

Accurate detection of target analytes and generation of high-fidelity fluorescence signals are particularly critical in life sciences and clinical diagnostics. However, the majority of current NIR-I fluorescent probes are vulnerable to pH effects resulting in signal distortion. In this work, a series of fluorescence-tunable and pH-independent probes are reported by combining optically tunable groups of unsymmetric Si-rhodamines and introducing the methoxy instead of the spiro ring on the benzene ring at position 9. To validate the concept, the leucine aminopeptidase response site was introduced into Si-2,6OMe-NH2 with the best optical properties to synthesize Si-LAP for monitoring the intrahepatic LAP in vivo. Therefore, the design approach may provide a new and practical strategy for designing innovative functional fluorescent probes and generating high-stability and high-fidelity fluorescent signals.


Asunto(s)
Colorantes Fluorescentes , Leucil Aminopeptidasa , Colorantes Fluorescentes/química , Rodaminas/química , Fluorescencia , Concentración de Iones de Hidrógeno
16.
Anal Chem ; 95(18): 7294-7302, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37104743

RESUMEN

Aberrant lysosomal alkalization is associated with various biological processes, such as oxidative stress, cell apoptosis, ferroptosis, etc. Herein, we developed a novel aminofluorene-based fluorescence probe named FAN to monitor the lysosomal alkalization-related biological processes by its migration from lysosome to nucleus. FAN possessed NIR emission, large Stokes shift, high pH stability, and high photostability, making it suitable for real-time and long-term bioimaging. As a lysosomotropic molecule, FAN can accumulate in lysosomes first and then migrate to the nucleus by right of its binding capability to DNA after lysosomal alkalization. In this manner, FAN was successfully used to monitor these physiological processes which triggered lysosomal alkalization in living cells, including oxidative stress, cell apoptosis, and ferroptosis. More importantly, at higher concentrations, FAN could also serve as a stable nucleus dye for the fluorescence imaging of the nucleus in living cells and tissues. This novel multifunctional fluorescence probe shows great promise for application in lysosomal alkalization-related visual research and nucleus imaging.


Asunto(s)
Ferroptosis , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Imagen Óptica , Lisosomas/química , Apoptosis/fisiología , Concentración de Iones de Hidrógeno
18.
PLoS One ; 18(3): e0281708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36893184

RESUMEN

Most existing research uses experimental designs for testing, which cannot efficiently analyse the migration and sorting rules of particles in the disturbed slurry. Therefore, based on the fluidized bed flow film theory, a slurry flow film structure system is established according to the disturbance state of the fluid. On this basis, the particle size and distribution law of the disturbing force formed by slurry disturbance are analyzed, and the calculation model of single particle lift in the flowing film is also analyzed. On this basis, using Markov probability model, the probability of particle lifting and sorting between layers is theoretically deduced. Then, according to the particle ratio of the original mud, the settlement gradation of the particles in the disturbance is analyzed. It can also predict the separation degree of particle in natural turbulence, fluidized beds, and sludge mechanical dewatering. Finally, according to the particle flow software PFC (Particle Flow Code), the main influencing parameters (disturbing force and gradation) were verified and analyzed. The results show that the particle flow simulation results are in good agreement with the calculation results. The model of slurry membrane separation proposed in this paper can provide a basis for studying the mechanism of slurry disturbance separation and particle deposition.


Asunto(s)
Programas Informáticos , Tamaño de la Partícula , Simulación por Computador
19.
Chem Commun (Camb) ; 59(19): 2795-2798, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36789681

RESUMEN

An "AND" logic gate-based NIR fluorescent probe Si-NH2-Glu was developed based on novel meso-amine Si-Rhodamine, which combined γ-glutamyl transpeptidase and pH dual-responsive sites. The features of Si-NH2-Glu enable it to be applied in orthotopic tumor imaging and fluorescence-guided surgery.


Asunto(s)
Neoplasias de la Mama , Colorantes Fluorescentes , Humanos , Femenino , gamma-Glutamiltransferasa , Imagen Óptica/métodos , Concentración de Iones de Hidrógeno
20.
Opt Lett ; 48(3): 554-557, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723529

RESUMEN

Optical waveguides prepared by femtosecond laser direct writing have birefringent properties, which can affect polarization encoding and entanglement on chips. Here, we first propose a shape-stress dual compensation fabrication scheme to decrease birefringence. Ultralow birefringent waveguides (1 × 10-9) were obtained by controlling the cross sectional shape of the main waveguide and adjusting the position of the auxiliary lines. In addition, we prepared polarization-independent directional coupler and demonstrated the evolution of polarization-independent waveguide array with different polarized light. In the future, ultralow birefringent waveguides will be widely applied in polarization encoding and entangled quantum photonic integrated circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...