Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 14(1): 4969, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591960

RESUMEN

In twisted two-dimensional (2D) magnets, the stacking dependence of the magnetic exchange interaction can lead to regions of ferromagnetic and antiferromagnetic interlayer order, separated by non-collinear, skyrmion-like spin textures. Recent experimental searches for these textures have focused on CrI3, known to exhibit either ferromagnetic or antiferromagnetic interlayer order, depending on layer stacking. However, the very strong uniaxial anisotropy of CrI3 disfavors smooth non-collinear phases in twisted bilayers. Here, we report the experimental observation of three distinct magnetic phases-one ferromagnetic and two antiferromagnetic-in exfoliated CrBr3 multilayers, and reveal that the uniaxial anisotropy is significantly smaller than in CrI3. These results are obtained by magnetoconductance measurements on CrBr3 tunnel barriers and Raman spectroscopy, in conjunction with density functional theory calculations, which enable us to identify the stackings responsible for the different interlayer magnetic couplings. The detection of all locally stable magnetic states predicted to exist in CrBr3 and the excellent agreement found between theory and experiments, provide complete information on the stacking-dependent interlayer exchange energy and establish twisted bilayer CrBr3 as an ideal system to deterministically create non-collinear magnetic phases.

3.
Nano Lett ; 22(16): 6760-6766, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35930625

RESUMEN

We report experimental investigations of transport through bilayer graphene (BLG)/chromium trihalide (CrX3; X = Cl, Br, I) van der Waals interfaces. In all cases, a large charge transfer from BLG to CrX3 takes place (reaching densities in excess of 1013 cm-2), and generates an electric field perpendicular to the interface that opens a band gap in BLG. We determine the gap from the activation energy of the conductivity and find excellent agreement with the latest theory accounting for the contribution of the σ bands to the BLG dielectric susceptibility. We further show that for BLG/CrCl3 and BLG/CrBr3 the band gap can be extracted from the gate voltage dependence of the low-temperature conductivity, and use this finding to refine the gap dependence on the magnetic field. Our results allow a quantitative comparison of the electronic properties of BLG with theoretical predictions and indicate that electrons occupying the CrX3 conduction band are correlated.

4.
Nano Lett ; 22(15): 6149-6155, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35867517

RESUMEN

We perform magnetotransport experiments on VI3 multilayers to investigate the relation between ferromagnetism in bulk and in exfoliated layers. The magnetoconductance measured on field-effect transistors and tunnel barriers shows that the Curie temperature of exfoliated multilayers is TC = 57 K, larger than in bulk (TC,bulk = 50 K). Below T ≈ 40 K, we observe an unusual evolution of the tunneling magnetoconductance, analogous to the phenomenology observed in bulk. Comparing the magnetoconductance measured for fields applied in- or out-of-plane corroborates the analogy, allows us to determine that the orientation of the easy-axis in multilayers is similar to that in bulk, and suggests that the in-plane component of the magnetization points in different directions in different layers. Besides establishing that the magnetic state of bulk and multilayers are similar, our experiments illustrate the complementarity of magnetotransport and magneto-optical measurements to probe magnetism in 2D materials.

5.
Nat Nanotechnol ; 16(10): 1073-1078, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34385681

RESUMEN

Non-invasive, high-throughput spectroscopic techniques can identify chiral indices (n,m) of carbon nanotubes down to the single-tube level1-6. Yet, for complete characterization and to unlock full functionality, the handedness, the structural property associated with mirror symmetry breaking, also needs to be identified accurately and efficiently7-14. So far, optical methods fail in the handedness characterization of single nanotubes because of the extremely weak chiroptical signals (roughly 10-7) compared with the excitation light15,16. Here we demonstrate the complete structure identification of single nanotubes in terms of both chiral indices and handedness by Rayleigh scattering circular dichroism. Our method is based on the background-free feature of Rayleigh scattering collected at an oblique angle, which enhances the nanotube's chiroptical signal by three to four orders of magnitude compared with conventional absorption circular dichroism. We measured a total of 30 single-walled carbon nanotubes including both semiconducting and metallic nanotubes and found that their absolute chiroptical signals show a distinct structure dependence, which can be qualitatively understood through tight-binding calculations. Our strategy enables the exploration of handedness-related functionality of single nanotubes and provides a facile platform for chiral discrimination and chiral device exploration at the level of individual nanomaterials.

6.
Adv Mater ; 33(8): e2006395, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33314478

RESUMEN

Although single-wall carbon nanotubes (SWCNTs) exhibit various colors in suspension, directly synthesized SWCNT films usually appear black. Recently, a unique one-step method for directly fabricating green and brown films has been developed. Such remarkable progress, however, has brought up several new questions. The coloration mechanism, potentially achievable colors, and color controllability of SWCNTs are unknown. Here, a quantitative model is reported that can predict the specific colors of SWCNT films and unambiguously identify the coloration mechanism. Using this model, colors of 466 different SWCNT species are calculated, which reveals a broad spectrum of potentially achievable colors of SWCNTs. The calculated colors are in excellent agreement with existing experimental data. Furthermore, the theory predicts the existence of many brilliantly colored SWCNT films, which are experimentally expected. This study shows that SWCNTs as a form of pure carbon, can display a full spectrum of vivid colors, which is expected to complement the general understanding of carbon materials.

7.
Nat Commun ; 10(1): 3457, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358759

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
J Am Chem Soc ; 140(44): 14952-14957, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30353725

RESUMEN

Photocarrier generation in a material, transportation to the material surface, and collection at the electrode interface are of paramount importance in any optoelectronic and photovoltaic device. In the last collection process, ideal performance comprises ultrafast charge collection to enhance current conversion efficiency and broadband collection to enhance energy conversion efficiency. Here, for the first time, we demonstrate ultrafast broadband charge collection achieved simultaneously at the clean graphene/organic-inorganic halide perovskite interface. The clean interface is realized by directly growing perovskite on graphene surface without polymer contamination. The tunable two-color pump-probe spectroscopy, time-resolved photoluminescence spectroscopy, and time-dependent density functional theory all reveal that the clean-interfacial graphene collects band-edge photocarriers of perovskite in an ultrashort time of ∼100 fs, with a current collection efficiency close to 99%. In addition, graphene can extract deep-band hot carriers of perovskite within only ∼50 fs, several orders faster than hot carrier relaxation and cooling in perovskite itself, due to the unique Dirac linear band structure of graphene, indicating a potential high energy conversion efficiency exceeding the Shockley-Queisser limit. Adding other graphene superiority of good transparency, high carrier mobility, and extreme flexibility, clean-interfacial graphene provides an ideal charge collection layer and electrode candidate for future optoelectronic and photovoltaic applications in two dimensions.

9.
Nat Commun ; 9(1): 3387, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30140007

RESUMEN

The complex optical susceptibility is the most fundamental parameter characterizing light-matter interactions and determining optical applications in any material. In one-dimensional (1D) materials, all conventional techniques to measure the complex susceptibility become invalid. Here we report a methodology to measure the complex optical susceptibility of individual 1D materials by an elliptical-polarization-based optical homodyne detection. This method is based on the accurate manipulation of interference between incident left- (right-) handed elliptically polarized light and the scattering light, which results in the opposite (same) contribution of the real and imaginary susceptibility in two sets of spectra. We successfully demonstrate its application in determining complex susceptibility of individual chirality-defined carbon nanotubes in a broad optical spectral range (1.6-2.7 eV) and under different environments (suspended and in device). This full characterization of the complex optical responses should accelerate applications of various 1D nanomaterials in future photonic, optoelectronic, photovoltaic, and bio-imaging devices.

10.
Nat Commun ; 9(1): 3311, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120240

RESUMEN

Infrared light detection and sensing is deeply embedded in modern technology and human society and its development has always been benefitting from the discovery of various photoelectric materials. The rise of two-dimensional materials, thanks to their distinct electronic structures, extreme dimensional confinement and strong light-matter interactions, provides a material platform for next-generation infrared photodetection. Ideal infrared detectors should have fast respond, high sensitivity and air-stability, which are rare to meet at the same time in one two-dimensional material. Herein we demonstrate an infrared photodetector based on two-dimensional Bi2O2Se crystal, whose main characteristics are outstanding in the whole two-dimensional family: high sensitivity of 65 AW-1 at 1200 nm and ultrafast photoresponse of ~1 ps at room temperature, implying an intrinsic material-limited bandwidth up to 500 GHz. Such great performance is attributed to the suitable electronic bandgap and high carrier mobility of two-dimensional oxyselenide.

11.
Nanoscale ; 10(15): 6922-6927, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29594289

RESUMEN

Bimetallic catalysts play important roles in the selective growth of single-walled carbon nanotubes (SWNTs). Using the simple salts (NH4)6W7O24·6H2O and Co(CH3COO)2·4H2O as precursors, tungsten-cobalt catalysts were prepared. The catalysts were composed of W6Co7 intermetallic compounds and tungsten-dispersed cobalt. With the increase of the W/Co ratio in the precursors, the content of W6Co7 was increased. Because the W6Co7 intermetallic compound can enable the chirality specified growth of SWNTs, the selectivity of the resulting SWNTs is improved at a higher W/Co ratio. At a W/Co ratio of 6 : 4 and under optimized chemical vapor deposition conditions, we realized the direct growth of semiconducting SWNTs with the purity of ∼96%, in which ∼62% are (14, 4) tubes. Using salts as precursors to prepare tungsten-cobalt bimetallic catalysts is flexible and convenient. This offers an efficient pathway for the large-scale preparation of chirality enriched semiconducting SWNTs.

12.
Adv Mater ; 29(44)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29024087

RESUMEN

2D layered nanomaterials with strong covalent bonding within layers and weak van der Waals' interactions between layers have attracted tremendous interest in recent years. Layered Bi2 Se3 is a representative topological insulator material in this family, which holds promise for exploration of the fundamental physics and practical applications such as transparent electrode. Here, a simultaneous enhancement of optical transmittancy and electrical conductivity in Bi2 Se3 grid electrodes by copper-atom intercalation is presented. These Cu-intercalated 2D Bi2 Se3 electrodes exhibit high uniformity over large area and excellent stabilities to environmental perturbations, such as UV light, thermal fluctuation, and mechanical distortion. Remarkably, by intercalating a high density of copper atoms, the electrical and optical performance of Bi2 Se3 grid electrodes is greatly improved from 900 Ω sq-1 , 68% to 300 Ω sq-1 , 82% in the visible range; with better performance of 300 Ω sq-1 , 91% achieved in the near-infrared region. These unique properties of Cu-intercalated topological insulator grid nanostructures may boost their potential applications in high-performance optoelectronics, especially for infrared optoelectronic devices.

13.
Adv Mater ; 29(30)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28585311

RESUMEN

Controllable synthesis of carbon nanotubes (CNTs) is of great importance in its further application, which attracts broad attention. As growth and etching are the two sides in the process of material crystallography and the control of the competition between them forms the foundation for modern technology of materials design and manufacture, the understanding on etching process of carbon nanotubes is still very unclear because technically it is of great challenge to characterize the dynamics in such small one-dimensional (1D) scale. Here the real-time investigation on the etching process of CNTs is reported, by the hot-wall chemical reactor equipped with a polarized optical microscope. It is discovered that the CNT etching behavior in air is totally of random, including the etching sites, termination sites, and structure dependence. Combining with the dynamic simulation, it is revealed that the random behavior reflects the unique "self-termination" phenomenon. A structure-independent etching propagation barrier of 2.4 eV is also obtained, which indicates that the etching propagation process still follows the conventional Kinetic Wulff construction theory. The results represent the new knowledge on the etching process in carbon nanotube and can contribute to its selective enrichment. Furthermore, the "self-termination" phenomenon may be a universal behavior in 1D process.

14.
Adv Mater ; 29(30)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28585407

RESUMEN

Ultrafast electron pulses, combined with laser-pump and electron-probe technologies, allow ultrafast dynamics to be characterized in materials. However, the pursuit of simultaneous ultimate spatial and temporal resolution of microscopy and spectroscopy is largely subdued by the low monochromaticity of the electron pulses and their poor phase synchronization to the optical excitation pulses. Field-driven photoemission from metal tips provides high light-phase synchronization, but suffers large electron energy spreads (3-100 eV) as driven by a long wavelength laser (>800 nm). Here, ultrafast electron emission from carbon nanotubes (≈1 nm radius) excited by a 410 nm femtosecond laser is realized in the field-driven regime. In addition, the emitted electrons have great monochromaticity with energy spread as low as 0.25 eV. This great performance benefits from the extraordinarily high field enhancement and great stability of carbon nanotubes, superior to metal tips. The new nanotube-based ultrafast electron source opens exciting prospects for extending current characterization to sub-femtosecond temporal resolution as well as sub-nanometer spatial resolution.

15.
Chemistry ; 23(41): 9703-9710, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28378432

RESUMEN

Direct visualization of one-dimensional (1D) materials under an optical microscope in ambient conditions is of great significance for their characterizations and applications. However, it is full of challenges to achieve such goal due to their relative small size (ca. 1 nm in diameter) in the optical-diffraction-limited laser spot (ca. 1 µm in diameter). In this Concept article, we introduce a polarization-based optical homodyne detection method that can be used as a general strategy to obtain high-throughput, real-time, optical imaging and in situ spectroscopy of polarization-inhomogeneous 1D materials. We will use carbon nanotubes (CNTs) as an example to demonstrate the applications of such characterization with respect to the absorption signal of individual nanotubes, real-time imaging of individual nanotubes in devices, and statistical structure information of nanotube arrays.

16.
Adv Mater ; 29(7)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27922729

RESUMEN

A vertical point heterostructure (VPH) is constructed by sandwiching a two-dimensional (2D) MoS2 flake with two cross-stacked metallic single-walled carbon nanotubes. It can be used as a field-effect transistor with high on/off ratio and a light detector with high spatial resolution. Moreover, the hybrid 1D-2D-1D VPHs open up new possibilities for nanoelectronics and nano-optoelectronics.

17.
ACS Nano ; 10(10): 9595-9601, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27632420

RESUMEN

Conversion efficiency (CE) is the most important figure of merit for photodetectors. For carbon nanotubes (CNT) based photodetectors, the CE is mainly determined by excitons dissociation and transport of free carriers toward contacts. While phonon-assisted exciton dissociation mechanism is effective in split-gate CNT p-n diodes, the CE is typically low in these devices, approximately 1-5%. Here, we evaluate the performance of a barrier-free bipolar diode (BFBD), which is basically a semiconducting CNT asymmetrically contacted by perfect n-type ohmic contact (Sc) and p-type ohmic contact (Pd) at the two ends of the diode. We show that the CE in short channel BFBD devices (e.g., 60 nm) is over 60%, and it reduces rapidly with increasing channel length. We find that the electric-field-assisted mechanism dominates the dissociation rate of excitons in BFBD devices at zero bias and thus the photocurrent generation process. By performing a time-resolved and spatial-resolved Monte Carlo simulation, we find that there exists an effective electron (hole)-rich region near the n-type (p-type) electrode in the asymmetrically contacted BFBD device, where the electric-field strength is larger than 17 V/µm and exciton dissociation is extremely fast (<0.1 ps), leading to very high CE in the BFBD devices.

18.
Adv Mater ; 28(10): 2018-23, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26766418

RESUMEN

Optical multicolor imaging is used as a high-throughput statistical tool to determine the structure information of horizontally aligned carbon nanotube arrays on various substrates and in diverse environments. This high-throughput ability is achieved through the direct use of optical image information and an over 10-fold enhancement of the optical contrast by polarization manipulation.

19.
Small ; 11(40): 5388-94, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26305343

RESUMEN

By designing a few-layer boron nitried (BN) buffer layer, topological crystalline insulator Pb(1-x)Sn(x)Se nanoplates are directly grown on SiO2/Si, which shows high compatibility with current Si-based integrated circuit technology. Back-gated field-effect transistors of Pb(1-x)Sn(x)Se nanoplates exhibit a room-temperature carrier mobility of 0.73-4.90 cm(2) V(-1) s(-1), comparable to layered materials and molecular crystals, and high-efficiency mid-IR detection (1.9-2.0 µm).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...