Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Neurodegener ; 13(1): 24, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671492

RESUMEN

BACKGROUND: Adult neurogenesis occurs in the subventricular zone (SVZ) and the subgranular zone of the dentate gyrus in the hippocampus. The neuronal stem cells in these two neurogenic niches respond differently to various physiological and pathological stimuli. Recently, we have found that the decrement of carboxypeptidase E (CPE) with aging impairs the maturation of brain-derived neurotrophic factor (BDNF) and neurogenesis in the SVZ. However, it remains unknown whether these events occur in the hippocampus, and what the role of CPE is in the adult hippocampal neurogenesis in the context of Alzheimer's disease (AD). METHODS: In vivo screening was performed to search for miRNA mimics capable of upregulating CPE expression and promoting neurogenesis in both neurogenic niches. Among these, two agomirs were further assessed for their effects on hippocampal neurogenesis in the context of AD. We also explored whether these two agomirs could ameliorate behavioral symptoms and AD pathology in mice, using direct intracerebroventricular injection or by non-invasive intranasal instillation. RESULTS: Restoration of CPE expression in the hippocampus improved BDNF maturation and boosted adult hippocampal neurogenesis. By screening the miRNA mimics targeting the 5'UTR region of Cpe gene, we developed two agomirs that were capable of upregulating CPE expression. The two agomirs significantly rescued adult neurogenesis and cognition, showing multiple beneficial effects against the AD-associated pathologies in APP/PS1 mice. Of note, noninvasive approach via intranasal delivery of these agomirs improved the behavioral and neurocognitive functions of APP/PS1 mice. CONCLUSIONS: CPE may regulate adult hippocampal neurogenesis via the CPE-BDNF-TrkB signaling pathway. This study supports the prospect of developing miRNA agomirs targeting CPE as biopharmaceuticals to counteract aging- and disease-related neurological decline in human brains.


Asunto(s)
Enfermedad de Alzheimer , Carboxipeptidasa H , Hipocampo , Trastornos de la Memoria , Neurogénesis , Regulación hacia Arriba , Animales , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Enfermedad de Alzheimer/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Carboxipeptidasa H/genética , Carboxipeptidasa H/biosíntesis , Ratones , Trastornos de la Memoria/genética , Trastornos de la Memoria/etiología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , MicroARNs/genética , MicroARNs/biosíntesis , Masculino , Ratones Transgénicos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
3.
Mol Cell ; 83(15): 2810-2828.e6, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541219

RESUMEN

DNA damage-activated signaling pathways are critical for coordinating multiple cellular processes, which must be tightly regulated to maintain genome stability. To provide a comprehensive and unbiased perspective of DNA damage response (DDR) signaling pathways, we performed 30 fluorescence-activated cell sorting (FACS)-based genome-wide CRISPR screens in human cell lines with antibodies recognizing distinct endogenous DNA damage signaling proteins to identify critical regulators involved in DDR. We discovered that proteasome-mediated processing is an early and prerequisite event for cells to trigger camptothecin- and etoposide-induced DDR signaling. Furthermore, we identified PRMT1 and PRMT5 as modulators that regulate ATM protein level. Moreover, we discovered that GNB1L is a key regulator of DDR signaling via its role as a co-chaperone specifically regulating PIKK proteins. Collectively, these screens offer a rich resource for further investigation of DDR, which may provide insight into strategies of targeting these DDR pathways to improve therapeutic outcomes.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Daño del ADN , Humanos , Citometría de Flujo , Transducción de Señal , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Genoma , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genética
4.
Front Med (Lausanne) ; 9: 996280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186803

RESUMEN

Age-related macular degeneration (AMD) causes central vision impairment with increased incidence. In the pathogenesis of AMD, reactive oxygen species (ROS) are associated with RPE cell apoptosis. H2O2 is an oxidative toxicant and is used to establish the AMD in vitro model. However, the mechanisms of ROS in H2O2-induced AMD are still unclear. Fullerenol, a promising antioxidant of nanomaterials, protects RPE cells from ROS attack. In addition to working as a scavenger, little is known about the antioxidant mechanism of fullerenol in RPE cells. In this study, transcriptome sequencing was performed to examine the global changes in mRNA transcripts induced by H2O2 in human ARPE-19 cells. Moreover, we comprehensively investigated the protective effects of fullerenol against H2O2-induced oxidative injury by RNA sequencing. Gene Ontology enrichment analysis showed that those pathways related to the release of positive regulation of DNA-templated transcription and negative regulation of apoptotic process were affected. Finally, we found that 12 hub genes were related to the oxidative-protection function of fullerenol. In summary, H2O2 affected these hub genes and signaling pathways to regulate the senescence of RPE cells. Moreover, fullerenol is a potent nanomaterial that protects the RPE and would be a promising approach for AMD prevention.

5.
Theranostics ; 12(14): 6069-6087, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36168636

RESUMEN

Rationale: Hepatocellular carcinoma (HCC) is a primary malignancy of the liver that is the leading cause of cancer-related mortality worldwide. However, genetic alterations and mechanisms underlying HCC development remain unclear. Methods: Tissue specimens were used to evaluate the expression of DEAD-Box 56 (DDX56) to determine its prognostic value. Colony formation, CCK8, and EdU-labelling assays were performed to assess the effects of DDX56 on HCC proliferation. The in vivo role of DDX56 was evaluated using mouse orthotopic liver xenograft and subcutaneous xenograft tumor models. Dual-luciferase reporter, chromatin immunoprecipitation, and electrophoretic mobility shift assays were performed to examine the effect of DDX56 on the MIST1 promoter. Results: DDX56 expression in HCC tissues was elevated and this increase was strongly correlated with poor prognoses for HCC patients. Functionally, DDX56 promoted HCC cell proliferation both in vitro and in vivo, while mechanistically interacting with MECOM to promote HCC proliferation by mono-methylating H3K9 (H3K9me1) on the MIST1 promoter, leading to enhanced MIST1 transcription and subsequent regulation of the PTEN/AKT signaling pathway, which promotes HCC proliferation. More importantly, the PTEN agonist, Oroxin B (OB), blocked the DDX56-mediated PTEN-AKT signaling pathway, suggesting that treating HCC patients with OB may be beneficial as a therapeutic intervention. Furthermore, we observed that ZEB1 bound to DDX56 and transcriptionally activated DDX56, leading to HCC tumorigenesis. Conclusions: Our results indicated that the ZEB1-DDX56-MIST1 axis played a vital role in sustaining the malignant progression of HCC and identified DDX56 as a potential therapeutic target in HCC tumorigenesis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Ratones , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética
6.
Front Immunol ; 13: 853349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757709

RESUMEN

Islet transplantation to treat the late stage of type 1 diabetic patient (T1DM) has recently made inspiring success in clinical trials. However, most patients experience a decline in islet graft function in one to three years due to immune rejection. Although the mechanisms of immune cells, including macrophages, dendritic cells (DCs), neutrophils, natural killer cells (NKs), B cells, and T cells, that mediate immune rejection have been investigated, the overall characteristics of immune infiltrates in islet allografts and syngeneic grafts remain unclear. Single-cell RNA sequencing (scRNA-seq) has provided us with new opportunities to study the complexity of the immune microenvironment in islet transplants. In the present study, we used scRNA-seq to comprehensively analyze the immune heterogeneity in the mouse model of islet transplantation. Our data revealed T lymphocytes and myeloid cells as the main immune components of grafts 7 days post-islet transplantation, especially in allografts. Moreover, our results indicated that allogeneic islet cells were transformed into antigen-presenting cell-like cells with highly expressed MHC class I molecules and genes involved in MHC class I-mediated antigen presentation. This transformation may dramatically facilitate the interaction with cytotoxic CD8+ T cells and promote the destruction of islet allografts. Our study provides insight into the transcriptomics and diverse microenvironment of islet grafts and their impacts on immune rejection.


Asunto(s)
Linfocitos T CD8-positivos , Trasplante de Islotes Pancreáticos , Aloinjertos , Animales , Antígenos de Histocompatibilidad Clase I , Humanos , Isoinjertos , Ratones , Trasplante Homólogo
7.
Mol Cell ; 82(7): 1297-1312.e8, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35219381

RESUMEN

Synthetic lethality through combinatorial targeting DNA damage response (DDR) pathways provides exciting anticancer therapeutic benefit. Currently, the long noncoding RNAs (lncRNAs) have been implicated in tumor drug resistance; however, their potential significance in DDR is still largely unknown. Here, we report that a human lncRNA, CTD-2256P15.2, encodes a micropeptide, named PAR-amplifying and CtIP-maintaining micropeptide (PACMP), with a dual function to maintain CtIP abundance and promote poly(ADP-ribosyl)ation. PACMP not only prevents CtIP from ubiquitination through inhibiting the CtIP-KLHL15 association but also directly binds DNA damage-induced poly(ADP-ribose) chains to enhance PARP1-dependent poly(ADP-ribosyl)ation. Targeting PACMP alone inhibits tumor growth by causing a synthetic lethal interaction between CtIP and PARP inhibitions and confers sensitivity to PARP/ATR/CDK4/6 inhibitors, ionizing radiation, epirubicin, and camptothecin. Our findings reveal that a lncRNA-derived micropeptide regulates cancer progression and drug resistance by modulating DDR, whose inhibition could be employed to augment the existing anticancer therapeutic strategies.


Asunto(s)
Endodesoxirribonucleasas , Neoplasias , Péptidos , Poli ADP Ribosilación , ARN Largo no Codificante , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Péptidos/farmacología , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
8.
Front Cell Dev Biol ; 9: 797339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966745

RESUMEN

Gastric cancer (GC) is a malignant disease of the digestive tract and a life-threatening disease worldwide. Ferroptosis, an iron-dependent cell death caused by lipid peroxidation, is reported to be highly correlated with gastric tumorigenesis and immune cell activity. However, the underlying relationship between ferroptosis and the tumor microenvironment in GC and potential intervention strategies have not been unveiled. In this study, we profiled the transcriptome and prognosis data of ferroptosis-related genes (FRGs) in GC samples of the TCGA-STAD dataset. The infiltrating immune cells in GC were estimated using the CIBERSORT and XCELL algorithms. We found that the high expression of the hub FRGs (MYB, PSAT1, TP53, and LONP1) was positively correlated with poor overall survival in GC patients. The results were validated in an external GC cohort (GSE62254). Further immune cell infiltration analysis revealed that CD4+ T cells were the major infiltrated cells in the tumor microenvironment of GC. Moreover, the hub FRGs were significantly positively correlated with activated CD4+ T cell infiltration, especially Th cells. The gene features in the high-FRG score group were enriched in cell division, DNA repair, protein folding, T cell receptor, Wnt and NIK/NF-kappaB signaling pathways, indicating that the hub FRGs may mediate CD4+ T cell activation by these pathways. In addition, an upstream transcriptional regulation network of the hub FRGs by lncRNAs was also developed. Three lncRNAs (A2M-AS1, C2orf27A, and ZNF667-AS1) were identified to be related to the expression of the hub FRGs. Collectively, these results showed that lncRNA A2M-AS1, C2orf27A, and ZNF667-AS1 may target the hub FRGs and impair CD4+ T cell activation, which finally leads to poor prognosis of GC. Effective interventions for the above lncRNAs and the hub FRGs can help promote CD4+ T cell activation in GC patients and improve the efficacy of immunotherapy. These findings provide a novel idea of GC immunotherapy and hold promise for future clinical application.

9.
J Vis Exp ; (176)2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34747411

RESUMEN

Type 1 diabetes mellitus (T1DM) is caused by autoimmune destruction of pancreatic ß cells, which results in little or no insulin production. Islet transplantation plays an important role in the treatment of T1DM, with the improved glycometabolic control, the reduced progression of complications, the reduction of hypoglycemic episodes when compared with traditional insulin therapy. The results of phase III clinical trial also demonstrated the safety and efficacy of islet allotransplantation in T1DM. However, the shortage of pancreas donors limits its widespread use. Animals as a source of islets such as the pig offer an alternative choice. Because the architecture of the pig pancreas is different from the islets of mice or humans, the pig islet isolation procedure is still challenging. Since the translation of alternative porcine islet sources (xenogeneic) to the clinical setting for treating T1DM through cellular transplantation is of great importance, a cost-effective, standardized, and reproducible protocol for isolating porcine islets is urgently needed. This manuscript describes a simplified and cost-effective method to isolate and purify adult porcine islets based on the previous protocols that have successfully transplanted porcine islets to non-human primates. This will be a beginners guide without the use of specialized equipment such as a COBE 2991 Cell Processor.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Diabetes Mellitus Tipo 1/cirugía , Islotes Pancreáticos/cirugía , Trasplante de Islotes Pancreáticos/métodos , Ratones , Páncreas , Porcinos , Trasplante Heterólogo/métodos
10.
Front Cell Dev Biol ; 9: 734287, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35059393

RESUMEN

Abnormal activation of protein kinases and phosphatases is implicated in various tumorigenesis, including hepatocellular carcinoma (HCC). Advanced HCC patients are treated with systemic therapy, including tyrosine kinase inhibitors, which extend overall survival. Investigation of the underlying mechanism of protein kinase signaling will help to improve the efficacy of HCC therapy. Combining single-cell RNA sequencing data and TCGA RNA-seq data, we profiled the protein kinases, phosphatases, and other phosphorylation-related genes (PRGs) of HCC patients in this study. We found nine protein kinases and PRGs with high expression levels that were mainly detected in HCC cancer stem cells, including POLR2G, PPP2R1A, POLR2L, PRC1, ITBG1BP1, MARCKSL1, EZH2, DTYMK, and AURKA. Survival analysis with the TCGA dataset showed that these genes were associated with poor prognosis of HCC patients. Further correlation analysis showed that these genes were involved in cell cycle-related pathways that may contribute to the development of HCC. Among them, AURKA and EZH2 were identified as two hub genes by Ingenuity Pathway Analysis. Treatment with an AURKA inhibitor (alisertib) and an EZH2 inhibitor (gambogenic) inhibited HCC cell proliferation, migration, and invasion. We also found that both AURKA and EZH2 were highly expressed in TP53-mutant HCC samples. Our comprehensive analysis of PRGs contributes to illustrating the mechanisms underlying HCC progression and identifying potential therapeutic targets for future clinical trials.

11.
Front Genet ; 11: 609184, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240335

RESUMEN

Apple (Malus domestica Borkh.), an economically important tree fruit worldwide, frequently suffers from temperature stress during growth and development, which strongly affects the yield and quality. Heat shock protein 20 (HSP20) genes play crucial roles in protecting plants against abiotic stresses. However, they have not been systematically investigated in apple. In this study, we identified 41 HSP20 genes in the apple 'Golden Delicious' genome. These genes were unequally distributed on 15 different chromosomes and were classified into 10 subfamilies based on phylogenetic analysis and predicted subcellular localization. Chromosome mapping and synteny analysis indicated that three pairs of apple HSP20 genes were tandemly duplicated. Sequence analysis revealed that all apple HSP20 proteins reflected high structure conservation and most apple HSP20 genes (92.6%) possessed no introns, or only one intron. Numerous apple HSP20 gene promoter sequences contained stress and hormone response cis-elements. Transcriptome analysis revealed that 35 of 41 apple HSP20 genes were nearly unchanged or downregulated under normal temperature and cold stress, whereas these genes exhibited high-expression levels under heat stress. Subsequent qRT-PCR results showed that 12 of 29 selected apple HSP20 genes were extremely up-regulated (more than 1,000-fold) after 4 h of heat stress. However, the heat-upregulated genes were barely expressed or downregulated in response to cold stress, which indicated their potential function in mediating the response of apple to heat stress. Taken together, these findings lay the foundation to functionally characterize HSP20 genes to unravel their exact role in heat defense response in apple.

12.
Biochim Biophys Acta Proteins Proteom ; 1866(3): 464-472, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29196234

RESUMEN

Environmental stresses are important factors causing male infertility which attracts broad attention. Protein acetylation is a pivotal post-translational modification and modulates diverse physiological processes including spermatogenesis. In this study, we employed quantitative proteomic techniques and bioinformatics tools to analyze the alterations of acetylome profile of mouse testis after heat shock and X-irradiation. Overall, we identified 1139 lysine acetylation sites in 587 proteins in which 1020 lysine acetylation sites were quantified. The Gene Ontology analysis showed that the major acetylated protein groups were involved in generation of precursor metabolites and metabolic processes, and were localized predominantly in cytosolic and mitochondrial. Compared to the control group, 36 sites of 28 acetylated proteins have changed after heat shock, and 49 sites of 43 acetylated proteins for X-ray exposure. Some of the differentially acetylated proteins have been reported to be associated with the progression of spermatogenesis and male fertility. We observed the up-regulated acetylation level change on testis specific histone 2B and heat shock protein upon heat treatment and a sharp decline of acetylation level on histone H2AX under X-ray treatment, suggesting their roles in male germ cells. Notably, the acetylation level on K279 of histone acetyltransferase (Kat7) was down-regulated in both heat and X-ray treatments, indicating that K279 may be a key acetylated site and affect its functions in spermatogenesis. Our results reveal that protein acetylation might add another layer of complexity to the regulation for spermatogenesis, and further functional studies of these proteins will help us elucidate the mechanisms of abnormal spermatogenesis.


Asunto(s)
Calor , Lisina/metabolismo , Proteómica/métodos , Testículo/metabolismo , Testículo/efectos de la radiación , Acetilación/efectos de la radiación , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biología Computacional , Respuesta al Choque Térmico/efectos de la radiación , Lisina/química , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Dominios Proteicos , Proteoma/química , Proteoma/metabolismo , Espectrometría de Masas en Tándem
13.
PLoS One ; 10(5): e0125722, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25938435

RESUMEN

BACKGROUNDS: Cistanche deserticola is a completely non-photosynthetic parasitic plant with great medicinal value and mainly distributed in desert of Northwest China. Its dried fleshy stem is a crucial tonic in traditional Chinese medicine with roles of mainly improving male sexual function and strengthening immunity, but few mechanistic studies have been conducted partly due to the lack of genomic and transcriptomic resources. RESULTS: In this study, we performed deep transcriptome sequencing in fleshy stem of C. deserticola, and about 80 million reads were generated using Illumina pair-end sequencing on HiSeq2000 platform. Using trinity assembler, we obtained 95,787 transcript sequences with transcript lengths ranging from 200 bp to 15,698 bp, having an average length of 950 bases and the N50 length of 1,519 bases. 63,957 transcripts were identified actively expressed with FPKM ≥ 0.5, in which 30,098 transcripts were annotated with gene descriptions or gene ontology terms by sequence similarity analyses against several public databases (Uniprot, NR and Nt at NCBI, and KEGG). Furthermore, we identified key enzyme genes involved in biosynthesis of lignin and phenylethanoid glycosides (PhGs) which are known to be the primary active ingredients. Four phenylalanine ammonia-lyase (PAL) genes, the first key enzyme in lignin and PhG biosynthesis, were identified based on sequences comparison and phylogenetic analysis. Two biosynthesis pathways of PhGs were also proposed for the first time. CONCLUSIONS: In all, we completed a global analysis of the C. deserticola fleshy stem transcriptome using RNA-seq technology. A collection of enzyme genes related to biosynthesis of lignin and phenylethanoid glysides were identified from the assembled and annotated transcripts, and the gene family of PAL was also predicted. The sequence data from this study will provide a valuable resource for conducting future phenylethanoid glysides biosynthesis researches and functional genomic studies in this important medicinal plant.


Asunto(s)
Cistanche/genética , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Tallos de la Planta/genética , Transcriptoma , Cistanche/metabolismo , Biología Computacional , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Anotación de Secuencia Molecular , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Tallos de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...