Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38068168

RESUMEN

The aging precipitation behavior of 6061 aluminum alloy that underwent iron casting and water-cooled copper casting and 6061 aluminum with Mn and Zr elements added was studied. Firstly, the hardness curves, tensile properties, and fracture morphology of four aging alloys-6061 (iron mold casting), 6061 (water-cooled copper mold casting), 6061-0.15Mn-0.05Zr (iron mold casting), and 6061-0.15Mn-0.05Zr (water-cooled copper mold casting)-were studied. The results of the aging hardness curve show that the aging precipitated phase of the 6061 alloy cast with a water-cooled copper mold is dispersed. The addition of Mn increases the amount of coarse inclusion α-(AlMnFeSi) in the alloy, resulting in a decrease in the age hardening property. The addition of Zr is related to the nucleation and growth of the G.P. region in the early aging period, mainly changing the formation rate and quantity of the G.P. region, leading to the advancement of peak aging and an increase in hardness. After the G.P. region gradually transforms into the ß phase, the hardness of the alloy increases with the increase in the volume fraction of the ß phase. When the ß″ phase is coarsened to the point where the fault line can be bypassed, the transitional metastable ß' phase begins to precipitate, and the coherent distortion around it weakens, indicating over-aging. Finally, the equilibrium phase Mg2Si is formed. The results of the tensile tests indicate that the tensile strength and yield strength of the 6061-0.15Mn-0.05Zr alloy produced by water-cooled copper casting after aging are 356 Mpa and 230 Mpa, respectively. These values are 80 MPa and 75 MPa higher, respectively, than those of the 6061 aluminum alloy produced via iron casting. However, the elongation is by 5%. The fracture morphology of the tensile sample of the aging alloy shows that dislocation slip in the alloy results in dislocation plugging, stress concentration, and the initiation of crack cleavage on the surface. The fracture of the water-cooled copper mold-casting alloy is a ductile fracture of the microporous aggregation type, and the macroscopic fracture exhibits an obvious "neck shrinkage" phenomenon. The fracture analysis is consistent with the mechanical properties. The DSC curve shows that there is no enrichment process of solute atoms during the heating process, and the aging precipitation process after homogenization is as follows: G.P. zone → ß″ phase → ß' phase. The aging precipitation process of the water-cooled copper casting alloy after homogenization treatment is as follows: ß″ phase → ß' phase (no precipitation in the G.P. zone was observed). The results of the differential scanning calorimetry (DSC) analysis show that the main strengthening phase in the experimental alloy system is the ß″ phase. The activation energies for the ß″ phase precipitation were calculated and found to be 147 KJ/mol, 217 KJ/mol, 185 KJ/mol, and 235 KJ/mol, respectively. Additionally, a kinetic equation for the ß″ phase precipitation during alloy aging was fitted.

2.
Materials (Basel) ; 13(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059604

RESUMEN

The treatment of goaf subsidence is important for sustainable development. Geopolymer is a new type of cementing material with excellent mechanical properties, durability, corrosion resistance, and other advantages owing to its unique three-dimensional spatial aggregation structure. Herein, a type of preparation technology of fly-ash-based foamed geopolymer suitable for goaf filling was developed by adding a chemical foaming agent to the matrix of fly-ash-based geopolymer. The mechanical properties, chemical composition, and pore structure characteristics of the samples were discussed. When the samples with different contents of fly ash, sodium metasilicate, sodium stearate, H2O2, and NaOH were prepared, a uniaxial compression test was performed to analyze the uniaxial compression failure characteristics and compression strength of the samples. The mineralogical composition of each sample was analyzed by X-ray diffraction (XRD) test, and the microstructure images of different samples were observed using scanning electron microscopy (SEM). The effects of the content of each component on the properties of the samples were discussed. Finally, the CO2 emission, energy consumption, and cost of producing fly-ash-based foamed geopolymer were analyzed. Overall, the material had the advantages of low energy consumption, low CO2 emission, environmental-protection ability, and waste utilization and thus has a broad application prospect in treating subsidence.

3.
Materials (Basel) ; 11(10)2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30249993

RESUMEN

A Pd-free activation pretreatment process was developed for electroless Ni-P plating on NiFe2O4 particles. The main influencing factors, including NiCl2·6H2O concentration, pH of electroless bath and temperature, were investigated. Microstructures of the coating layers were characterized by scanning electron microscopy. It was found that a more uniform and compact Ni-P coating layer was successfully formed by electroless plating via Pd-free activation pretreatment than Pd as sited plating. The coating layers plated by Pd-free activation pretreatment were thicker than those by the sensitization and activation pretreatment on average (9 vs. 5 µm). The new process did not need conventional sensitization or activation pretreatments, because the Ni particles dispersed uniformly on the NiFe2O4 substrate became catalytic activation sites for nickel electroless plating. Such improvement was beneficial to shortening the preparation process and reducing the production costs with the use of noble metal Pd.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA