Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 16(1): 199, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27619227

RESUMEN

BACKGROUND: Polyploidy has pivotal influences on rice (Oryza sativa L.) morphology and physiology, and is very important for understanding rice domestication and improving agricultural traits. Diploid (DP) and triploid (TP) rice shows differences in morphological parameters, such as plant height, leaf length, leaf width and the physiological index of chlorophyll content. However, the underlying mechanisms determining these morphological differences are remain to be defined. To better understand the proteomic changes between DP and TP, tandem mass tags (TMT) mass spectrometry (MS)/MS was used to detect the significant changes to protein expression between DP and TP. RESULTS: Results indicated that both photosynthesis and metabolic pathways were highly significantly associated with proteomic alteration between DP and TP based on biological process and pathway enrichment analysis, and 13 higher abundance chloroplast proteins involving in these two pathways were identified in TP. Quantitative real-time PCR analysis demonstrated that 5 of the 13 chloroplast proteins ATPF, PSAA, PSAB, PSBB and RBL in TP were higher abundance compared with those in DP. CONCLUSIONS: This study integrates morphology, physiology and proteomic profiling alteration of DP and TP to address their underlying different molecular mechanisms. Our finding revealed that ATPF, PSAA, PSAB, PSBB and RBL can induce considerable expression changes in TP and may affect the development and growth of rice through photosynthesis and metabolic pathways.


Asunto(s)
Diploidia , Oryza/crecimiento & desarrollo , Fotosíntesis , Proteínas de Plantas/química , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/química , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Proteómica , Espectrometría de Masas en Tándem
2.
BMC Genomics ; 13: 135, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22500940

RESUMEN

BACKGROUND: Miniature inverted repeat transposable element (MITE) is one type of transposable element (TE), which is largely found in eukaryotic genomes and involved in a wide variety of biological events. However, only few MITEs were proved to be currently active and their physiological function remains largely unknown. RESULTS: We found that the amplicon discrepancy of a gene locus LOC_Os01g0420 in different rice cultivar genomes was resulted from the existence of a member of Gaijin-like MITEs (mGing). This result indicated that mGing transposition was occurred at this gene locus. By using a modified transposon display (TD) analysis, the active transpositions of mGing were detected in rice Jiahua No. 1 genome under three conditions: in seedlings germinated from the seeds received a high dose γ-ray irradiation, in plantlets regenerated from anther-derived calli and from scutellum-derived calli, and were confirmed by PCR validation and sequencing. Sequence analysis revealed that single nucleotide polymorphisms (SNPs) or short additional DNA sequences at transposition sites post mGing transposition. It suggested that sequence modification was possibly taken place during mGing transposition. Furthermore, cell re-differentiation experiment showed that active transpositions of both mGing and mPing (another well studied MITE) were identified only in regenerated plantlets. CONCLUSIONS: It is for the first time that mGing active transposition was demonstrated under γ-ray irradiation or in cell re-differentiation process in rice. This newly identified active MITE will provide a foundation for further analysis of the roles of MITEs in biological process.


Asunto(s)
Diferenciación Celular/genética , Elementos Transponibles de ADN/genética , Secuencias Invertidas Repetidas/genética , Repeticiones de Minisatélite/genética , Oryza/citología , Oryza/genética , Secuencia de Bases , Diferenciación Celular/efectos de la radiación , Secuencia Conservada/genética , Técnicas de Cultivo , Evolución Molecular , Rayos gamma , Germinación/genética , Germinación/efectos de la radiación , Intrones/genética , Datos de Secuencia Molecular , Oryza/crecimiento & desarrollo , Oryza/efectos de la radiación , Plantones/citología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación
3.
J Integr Plant Biol ; 50(9): 1078-88, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18844776

RESUMEN

Rice endosperm plays a very important role in seedling germination and determines the qualities of rice grain. Although studies on specific gene categories in endosperm have been carried out, global view of gene expression at a transcription level in rice endosperm is still limited. To gain a better understanding of the global and tissue-specific gene expression profiles in rice endosperm, a cDNA library from rice endosperm of immature seeds was sequenced. A cDNA array was constructed based on the tentative unique transcripts derived from expression sequence tag (EST) assembling results and then hybridized with cDNAs from five different tissues or organs including endosperm, embryo, leaf, stem and root of rice. Significant redundancy was found for genes encoding prolamin, glutelin, allergen, and starch synthesis proteins, accounting for approximately 34% of the total ESTs obtained. The cDNA array revealed 87 significantly expressed genes in endosperm compared with the other four organs or tissues. These genes included 13 prolamin family proteins, 17 glutelin family proteins, 12 binding proteins, nine catalytic proteins and four ribosomal proteins, indicating a complicated biological processing in rice endosperm. In addition, Northern verification of 1,4-alpha-glucan branching enzyme detected two isoforms in rice endosperm, the larger one of which only existed in endosperm.


Asunto(s)
Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/embriología , Oryza/genética , Semillas/genética , Northern Blotting , Biblioteca de Genes , Genes de Plantas , Especificidad de Órganos , Reproducibilidad de los Resultados , Semillas/embriología , Análisis de Secuencia de ADN
4.
J Zhejiang Univ Sci B ; 7(7): 565-71, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16773731

RESUMEN

Genotypic and environmental variation in Cd, Cr, As, Ni and Pb concentrations of grains, and the relationships between these heavy metals and Fe, Zn were investigated using 9 rice genotypes grown in 6 locations for two successive years. Significant genotypic variation was detected in the five heavy metal concentrations in grains, indicating the possibility to reduce the concentration of these heavy metals in grains through breeding approach. The environmental effect varied with metal, with Pb and Ni having greater variation than the other three metals. There was significant genotype-environment (location) interaction of the concentrations of all five heavy metals in grains, suggesting the importance of cultivar choice in producing rice with low heavy metal concentrations in grains for a given location. Correlation analysis showed that Cd and As, Cr and Ni, and As and Pb concentrations in rice grains were closely associated, and that Ni concentration in grains was negatively correlated with Zn concentration.


Asunto(s)
Grano Comestible/química , Grano Comestible/genética , Ambiente , Metales Pesados/análisis , Oryza/química , Oryza/genética , Contaminantes del Suelo/análisis , Arsénico/análisis , Cadmio/análisis , Cromo/análisis , Variación Genética/genética , Genotipo , Plomo/análisis , Níquel/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...