Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 195: 114999, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277258

RESUMEN

Breast milk is widely acknowledged as the ideal nutritional resource for infants and can well meet the nutritional requirements for baby's growth and development. Infant formula is a substitute for breast milk, designed to closely mimic its composition and function for breast milk. Most of the previous studies used tumor colorectal cancer cell lines to study the nutritional potency of formula and its components, so realistic data closer to the baby could not be obtained. Small intestinal organoids, derived from differentiated human embryonic stem cells, can be used to simulate nutrient absorption and metabolism in vitro. In this experiment, we used small intestinal organoids to compare the nutrient absorption and metabolism of three infant formulae for 0-6 months with breast milk samples. Transcriptome and metabolome sequencing methods were used to analyze the differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs). The pathways related to DEGs, DEMs were enriched using GO, KEGG, GSEA and other methods to investigate their biological characteristics. We have found that both formula and breast milk promote the development of the infant's immune system, nutrient absorption and intestinal development. In PMH1 we found that the addition of oligofructose to milk powder promoted lipid metabolism and absorption. In PMH2 we found that whey protein powder favours the development of the immune system in infants. In PMH3 we found that oligogalactans may act on the brain-gut axis by regulating the intestinal flora, thereby promoting axon formation and neural development. By linking these biological properties of the milk powder with its composition, we confirmed the effects of added ingredients on the growth and development of infants. Also, we demonstrated the validity of small intestine organoids as a model for absorption and digestion in vitro. Through the above analyses, the advantages and disadvantages of the roles of formula and breast milk in the growth and metabolism of infants were also compared.


Asunto(s)
Fórmulas Infantiles , Intestino Delgado , Metaboloma , Leche Humana , Organoides , Transcriptoma , Humanos , Leche Humana/metabolismo , Leche Humana/química , Organoides/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/citología , Lactante , Oligosacáridos/metabolismo , Recién Nacido , Absorción Intestinal , Femenino , Proteína de Suero de Leche/metabolismo
2.
Nutrients ; 16(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39275267

RESUMEN

Ensuring optimal infant nutrition is crucial for the health and development of children. Many infants aged 0-6 months are fed with infant formula rather than breast milk. Research on cancer cell lines and animal models is limited to examining the nutrition effects of formula and breast milk, as it does not comprehensively consider absorption, metabolism, and the health and social determinants of the infant and its physiology. Our study utilized small intestine organoids induced from human embryo stem cell (ESC) to compare the nutritional effects of breast milk from five donors during their postpartum lactation period of 1-6 months and three types of Stage 1 infant formulae from regular retail stores. Using transcriptomics and untargeted metabolomics approaches, we focused on the differences such as cell growth and development, cell junctions, and extracellular matrix. We also analyzed the roles of pathways including AMPK, Hippo, and Wnt, and identified key genes such as ALPI, SMAD3, TJP1, and WWTR1 for small intestine development. Through observational and in-vitro analysis, our study demonstrates ESC-derived organoids might be a promising model for exploring nutritional effects and underlying mechanisms.


Asunto(s)
Fórmulas Infantiles , Intestino Delgado , Leche Humana , Organoides , Humanos , Leche Humana/química , Intestino Delgado/metabolismo , Organoides/metabolismo , Lactante , Recién Nacido , Femenino , Metabolómica/métodos , Fenómenos Fisiológicos Nutricionales del Lactante , Lactancia , Transcriptoma , Multiómica
3.
Food Funct ; 15(18): 9191-9209, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39158038

RESUMEN

Infant formulas are designed to provide sufficient energy and the necessary nutrients to support the growth and development of newborns. Currently, research on the functions of formula milk powder focuses on clinical research and cell experiments, and there were many cell experiments that investigated the effect of infant formulas on cellular growth. However, most of the cells used are tumor cell lines, which are unable to simulate the real digestion process of an infant. In this study, we innovatively proposed a method that integrates human small intestinal organoids (SIOs) with transcriptomics and metabolomics analysis. We induced directed differentiation of human embryonic stem cells into SIOs and simulated the intestinal environment of newborns with them. Then, three kinds of 1-stage infant formulas from the same brand were introduced to simulate the digestion, absorption, and metabolism of the infant intestine. The nutritional value of each formula milk powder was examined by multi-omics sequencing methods, including transcriptomics and metabolomics analysis. Results showed that there were significant alterations in gene expression and metabolites in the three groups of SIOs after absorbing different infant formulas. By analyzing transcriptome and metabolome data, combined with GO, KEGG, and GSEA analysis, we demonstrated the ability of SIOs to model the different aspects of the developing process of the intestine and discovered the correlation between formula components and their effects, including Lactobacillus lactis and lactoferrin. The study reveals the effect and mechanisms of formula milk powder on the growth and development of infant intestines and the formation of immune function. Furthermore, our method can help to construct a multi-level assessment model, detect the effects of nutrients, and evaluate the interactions between nutrients, which is helpful for future research and development of infant powders.


Asunto(s)
Fórmulas Infantiles , Intestino Delgado , Metabolómica , Organoides , Transcriptoma , Humanos , Intestino Delgado/metabolismo , Organoides/metabolismo , Lactante , Recién Nacido
4.
J Cell Physiol ; 239(5): e31216, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38327128

RESUMEN

c-Fos, a member of the immediate early gene, serves as a widely used marker of neuronal activation induced by various types of brain damage. In addition, c-Fos is believed to play a regulatory role in DNA damage repair. This paper reviews the literature on c-Fos' involvement in the regulation of DNA damage repair and indicates that genes of the Fos family can be induced by various forms of DNA damage. In addition, cells lacking c-Fos have difficulties in DNA repair. c-Fos is involved in tumorigenesis and progression as a proto-oncogene that maintains cancer cell survival, which may also be related to DNA repair. c-Fos may impact the repair of DNA damage by regulating the expression of downstream proteins, including ATR, ERCC1, XPF, and others. Nonetheless, the underlying mechanisms necessitate further exploration.


Asunto(s)
Daño del ADN , Reparación del ADN , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-fos , Humanos , Reparación del ADN/genética , Daño del ADN/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Animales , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo
5.
Anal Chem ; 94(25): 9074-9080, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35694855

RESUMEN

Fluorescent silicon nanodots have shown great prospects for bioimaging and biosensing applications. Although various fluorescent silicon-containing nanodots (SiNDs) have been developed, there are few reports about renal-clearable multicolor SiNDs. Herein, renal-clearable multicolor fluorescent SiNDs are synthesized by using silane molecules and organic dyes through a facile one-step hydrothermal method. The fluorescence of the resulting SiNDs can be tuned to blue (bSiNDs), green (gSiNDs), and red (rSiNDs) by simply changing the categories of silane reagents or dye molecules. The as-prepared SiNDs exhibit strong fluorescence with a quantum yield up to 72%, excellent photostability, and good biocompatibility with 12 h renal clearance rate as high as 86% ID. These properties enabled the SiNDs for tumor fluorescence imaging and H2O2 imaging in living cells and tissue through in situ reduction reaction-lighted fluorescence of the nanoprobe. Our results provide an invaluable methodology for the synthesis of renal-clearable multicolor SiNDs and their potential applications for fluorescence imaging and biomarker sensing. These SiNDs are also promising for various biological and biomedical applications.


Asunto(s)
Neoplasias , Puntos Cuánticos , Colorantes , Colorantes Fluorescentes , Humanos , Peróxido de Hidrógeno , Neoplasias/diagnóstico por imagen , Imagen Óptica , Silanos , Silicio
6.
Angew Chem Int Ed Engl ; 60(39): 21565-21574, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34322988

RESUMEN

Protein kinases constitute a rich pool of biomarkers and therapeutic targets of tremendous diseases including cancer. However, sensing kinase activity in vivo while implementing treatments according to kinase hyperactivation remains challenging. Herein, we present a nanomediator-effector cascade system that can in situ magnify the subtle events of kinase-catalyzed phosphorylation via DNA amplification machinery to achieve kinase activity imaging and kinase-responsive drug release in vivo. In this cascade, the phosphorylation-mediated disassembly of DNA/peptide complex on the nanomediators initiated the detachment of fluorescent hairpin DNAs from the nanoeffectors via hybridization chain reaction (HCR), leading to fluorescence recovery and therapeutic cargo release. We demonstrated that this nanosystem simultaneously enabled trace protein kinase A (PKA) activity imaging and on-demand drug delivery for inhibition of tumor cell growth both in vitro and in vivo, affording a kinase-specific sense-and-treat paradigm for cancer theranostics.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , ADN/química , Doxorrubicina/farmacología , Nanopartículas/química , Técnicas de Amplificación de Ácido Nucleico , Péptidos/química , Proteínas Quinasas/metabolismo , Antibióticos Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN/metabolismo , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Nanopartículas/metabolismo , Hibridación de Ácido Nucleico , Imagen Óptica , Péptidos/metabolismo , Fosforilación , Proteínas Quinasas/análisis
7.
Analyst ; 146(16): 5115-5123, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34269357

RESUMEN

Dynamically monitoring intracellular glutathione (GSH), a crucial biomarker of oxidative stress, is of significance for the diagnosis and treatment of certain diseases. Although manganese dioxide (MnO2) based GSH fluorescent sensors have exhibited high sensitivity and good selectivity owing to the specific reactivity between GSH and MnO2, near-infrared (NIR) MnO2 based nanoprobes for GSH detection are scarce. Herein, we have developed a NIR activatable fluorescence nanoprobe for the imaging and determination of intracellular GSH based on a core-shell nanoparticle, consisting of NIR emitted gold nanocluster doped silica as the fluorescent core and manganese dioxide as the GSH-responsive shell (named AuNCs@MnO2). Due to the absorption competition mechanism, the outer MnO2 shell rather than the inner AuNCs core preferentially absorbed the excitation light, thus leading to fluorescence quenching of the inner AuNCs core. Upon addition of GSH, the fluorescence of the nanoprobe restored along with the reduction of MnO2 to Mn2+ because of the absorption competition disappearance-induced emission. The activatable fluorescence linearly increased upon changing the GSH concentration in the range of 2 to 5000 µM with a detection limit of 0.67 µM. The cytotoxicity test shows that the AuNCs@MnO2 nanoprobes have a good biocompatibility. After entering the cancer cells, the intracellular GSH degraded the outermost MnO2 shell and initiated the NIR fluorescence restoration of AuNCs, which can be used to monitor the dynamic change of intracellular GSH. This strategy provides an NIR-activatable way to detect GSH levels in living cells and offers a promising platform for the diagnosis and treatment of GSH-related diseases.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Glutatión , Humanos , Compuestos de Manganeso , Nanopartículas/toxicidad , Óxidos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA