Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 235(2): 446-456, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35451127

RESUMEN

Photosystem II (PSII), which splits water molecules at minimal excess photochemical potential, is inevitably photoinactivated during photosynthesis, resulting in compromised photosynthetic efficiency unless it is repaired. The energy cost of PSII repair is currently uncertain, despite attempts to calculate it. We experimentally determined the energy cost of repairing each photoinactivated PSII in cotton (Gossypium hirsutum) leaves, which are capable of repairing PSII in darkness. As an upper limit, 24 000 adenosine triphosphate (ATP) molecules (including any guanosine triphosphate synthesized at the expense of ATP) were required to repair one entire PSII complex. Further, over a 7-h illumination period at 526-1953 µmol photons m-2 s-1 , the ATP requirement for PSII repair was on average up to 4.6% of the ATP required for the gross carbon assimilation. Each of these two measures of ATP requirement for PSII repair is two- to three-fold greater than the respective reported calculated value. Possible additional energy sinks in the PSII repair cycle are discussed.


Asunto(s)
Gossypium , Complejo de Proteína del Fotosistema II , Adenosina Trifosfato/metabolismo , Clorofila , Gossypium/metabolismo , Luz , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo
2.
J Plant Physiol ; 220: 74-82, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29156245

RESUMEN

To clarify the influence of water deficit on the functionality of the photosynthetic apparatus of cotton plants, leaf gas exchange, chlorophyll a fluorescence, and P700 redox state were examined in field-grown cotton Gossypium hirsutum L. cv. Xinluzao 45. In addition, we measured changes in the P515 signal and analyzed the activity of ATP synthase and the trans-thylakoid proton gradient (ΔpH). With increasing water deficit, the net CO2 assimilation rate (AN) and stomatal conductance (gs) significantly decreased, but the maximum quantum efficiency of PSII photochemistry (Fv/Fm) did not change. The photochemical activity of photosystem II (PSII) was reflected by the photochemical quenching coefficient (qP), quantum efficiency of photosystem II [Y(II)], and electron transport rate through PSII [ETR(II)], while the activity of photosystem I (PSI) was reflected by the quantum efficiency of photosystem I [Y(I)] and the electron transport rate through PSI [ETR(I)]. Both activities were maintained under mild water deficit, but were slightly decreased under moderate water deficit. Under moderate water deficit, cyclic electron flow (CEF), the fraction of absorbed light dissipated thermally via the ΔpH- and xanthophyll-regulated process [Y(NPQ)], and the fraction of P700 oxidized under a given set of conditions [Y(ND)] increased. Our results suggest that the activities of both photosystems are stable under mild water deficit and decrease only slightly under moderate water deficit. Moderate water deficit stimulates CEF, and the stimulation of CEF is essential for protecting PSI and PSII against photoinhibition.


Asunto(s)
Sequías , Gossypium/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Agua/metabolismo , Transporte de Electrón , Estrés Fisiológico
3.
J Plant Physiol ; 194: 23-34, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26948982

RESUMEN

The responses of gas exchange, chlorophyll fluorescence and the anti-oxidative system of cotton leaves were studied during water deficit and recovery. The results show that water deficit led to a reversible reduction in the photosynthetic rate. This reduction was mainly accompanied by stomatal limitation. The activity of photosystem II (PSII) and photosystem I (PSI) was relatively stable during water deficit and recovery. Water deficit caused an enhanced production of reactive oxygen species (ROS) and increased lipid peroxidation. Proline accumulation and the anti-oxidative enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD), along with the antioxidant ascorbate (AsA), increased during water deficit. On re-watering, the ROS generation rate, anti-oxidative enzymes activities and the extent of the lipid peroxidation returned to near control values. Overall, rapid recovery of the photosynthetic rate is related to the stability of the photosystems which appears to be a critical mechanism allowing cotton plants to withstand and survive drought environments.


Asunto(s)
Adaptación Fisiológica , Antioxidantes/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Agua/fisiología , Ascorbato Peroxidasas/metabolismo , Clorofila/metabolismo , Sequías , Gossypium/enzimología , Gossypium/fisiología , Peroxidación de Lípido , Peroxidasa/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología , Especies Reactivas de Oxígeno/metabolismo , Suelo , Estrés Fisiológico , Superóxido Dismutasa/metabolismo
4.
Funct Plant Biol ; 43(5): 448-460, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-32480475

RESUMEN

To better understand the adaptation mechanisms of the photosynthetic apparatus of cotton plants to water deficit conditions, the influence of water deficit on photosynthesis, chlorophyll a fluorescence and the activities of antioxidant systems were determined simultaneously in Gossypium hirsutum L. cv. Xinluzao 45 (upland cotton) and Gossypium barbadense L. cv. Xinhai 21 (pima cotton). Water deficit decreased photosynthesis in both cotton species, but did not decrease chlorophyll content or induce any sustained photoinhibition in either cotton species. Water deficit increased ETR/4-AG, where ETR/4 estimates the linear photosynthetic electron flux and AG is the gross rate of carbon assimilation. The increase in ETR/4-AG, which represents an increase in photorespiration and alternative electron fluxes, was particularly pronounced in Xinluzao 45. In Xinluzao 45, water deficit increased the activities of antioxidative enzymes, as well as the contents of reactive oxygen species (ROS), which are related to the Mehler reaction. In contrast, moderate water deficit particularly increased non-photochemical quenching (NPQ) in Xinhai 21. Our results suggest that Xinluzao 45 relied on enhanced electron transport such as photorespiration and the Mehler reaction to dissipate excess light energy under mild and moderate water deficit. Xinhai 21 used enhanced photorespiration for light energy utilisation under mild water deficit but, when subjected to moderate water deficit, possessed a high capacity for dissipating excess light energy via heat dissipation.

5.
Funct Plant Biol ; 41(7): 737-747, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32481028

RESUMEN

To clarify the photoprotective mechanisms of cotton leaves under water deficit in the field, leaf gas exchange, chlorophyll a fluorescence as well as the corresponding physiological responses were examined in cotton (Gossypium hirsutum L.) to evaluate electron flux distribution. With increasing water deficit, net photosynthetic rate (Pn) significantly decreased, the total electron flux through PSII [Je(PSII)] gradually decreased and the fraction of electron flux required to sustain CO2 assimilation [Je(PCR)] markedly declined. Simultaneously, the ratio of quantum efficiency of PSII [Φ(PSII)] to the quantum efficiency of CO2 fixation [Φ(CO2)] increased, accompanied by an increase in the alternative electron flux (Ja). The enhanced alternative electron flux of O2-dependent Ja(O2-dependent) indicated that electrons had been transported to O2 in the Mehler-peroxide reaction (MPR) and that the remaining alternative electron flux Ja(O2-independent) had been used for nitrate reduction, as indicated by an increase in nitrate reductase (NR) and glutathinone reductase (GR) activities. In addition, mild water deficit increased the proportion of electron flux for the photorespiratory carbon oxidation [Je(PCO)]. Water deficit significantly increased surperoxide radical production rate (O2-•) and hydrogen peroxide content (H2O2), and the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD) and catalase (CAT) in cotton leaves also increased under water deficit. Therefore, the Mehler-peroxidation reaction, photorespiration and nitrate reduction helped to dissipated excess light energy, being important photoprotective mechanisms for adapting the photosynthetic apparatus to mild and moderate water deficit in cotton.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...