Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.268
Filtrar
1.
Ecotoxicol Environ Saf ; 278: 116436, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723383

RESUMEN

Excessive exposure to light is a global issue. Artificial light pollution has been shown to disrupt the body's natural circadian rhythm. To investigate the impacts of light on metabolism, we studied Sprague-Dawley rats chronically exposed to red or blue light during daytime or nighttime. Rats in the experimental group were exposed to extended light for 4 hours during daytime or nighttime to simulate the effects of excessive light usage. Strikingly, we found systemic metabolic alterations only induced by blue light during daytime. Furthermore, we conducted metabolomic analyses of the cerebrospinal fluid, serum, heart, liver, spleen, adrenal, cerebellum, pituitary, prostate, spermatophore, hypothalamus and kidney from rats in the control and blue light exposure during daytime. Significant changes in metabolites have been observed in cerebrospinal fluid, serum, hypothalamus and kidney of rats exposed to blue light during daytime. Metabolic alterations observed in rats encompassing pyruvate metabolism, glutathione metabolism homocysteine degradation, phosphatidylethanolamine biosynthesis, and phospholipid biosynthesis, exhibit analogous patterns to those inherent in specific physiological processes, notably neurodevelopment, cellular injury, oxidative stress, and autophagic pathways. Our study provides insights into tissue-specific metabolic changes in rats exposed to blue light during the daytime and may help explain potential mechanisms of photopathogenesis.

2.
Nano Lett ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717110

RESUMEN

Chiral perovskites play a pivotal role in spintronics and optoelectronic systems attributed to their chiral-induced spin selectivity (CISS) effect. Specifically, they allow for spin-polarized charge transport in spin light-emitting diodes (LEDs), yielding circularly polarized electroluminescence at room temperature without external magnetic fields. However, chiral lead bromide-based perovskites have yet to achieve high-performance green emissive spin-LEDs, owing to limited CISS effects and charge transport. Herein, we employ dimensional regulation and Sn2+-doping to optimize chiral bromide-based perovskite architecture for green emissive spin-LEDs. The optimized (PEA)x(S/R-PRDA)2-xSn0.1Pb0.9Br4 chiral perovskite film exhibits an enhanced CISS effect, higher hole mobility, and better energy level alignment with the emissive layer. These improvements allow us to fabricate green emissive spin-LEDs with an external quantum efficiency (EQE) of 5.7% and an asymmetry factor |gCP-EL| of 1.1 × 10-3. This work highlights the importance of tailored perovskite architectures and doping strategies in advancing spintronics for optoelectronic applications.

3.
J Hum Genet ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740982

RESUMEN

F-box protein 11 (FBXO11) is a member of F-Box protein family, which has recently been proved to be associated with intellectual developmental disorder with dysmorphic facies and behavioral abnormalities (IDDFBA, OMIM: 618089). In this study, 12 intellectual disability individuals from 5 Chinese ID families were collected, and whole exome sequencing (WES), sanger sequencing, and RNA sequencing (RNA-seq) were conducted. Almost all the affected individuals presented with mild to severe intellectual disability (12/12), global developmental delay (10/12), speech and language development delay (8/12) associated with a range of alternate features including increased body weight (7/12), short stature (6/12), seizures (3/12), reduced visual acuity (4/12), hypotonia (1/12), and auditory hallucinations and hallucinations (1/12). Distinguishingly, malformation was not observed in all the affected individuals. WES analysis showed 5 novel FBXO11 variants, which include an inframe deletion variant, a missense variant, two frameshift variants, and a partial deletion of FBXO11 (exon 22-23). RNA-seq indicated that exon 22-23 deletion of FBXO11 results in a new mRNA structure. Conservation and protein structure prediction demonstrated deleterious effect of these variants. The DEGs analysis revealed 148 differentially expressed genes shared among 6 affected individuals, which were mainly associated with genes of muscle and immune system. Our research is the first report of FBXO11-associated IDDFBA in Chinese individuals, which expands the genetic and clinical spectrum of this newly identified NDD/ID syndrome.

4.
Adv Mater ; : e2404815, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719211

RESUMEN

The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm-2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg-1) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs.

5.
Free Radic Biol Med ; 219: 141-152, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636714

RESUMEN

Pulmonary hypertension (PH) is a devastating disease that lacks effective treatment options and is characterized by severe pulmonary vascular remodeling. Pulmonary arterial endothelial cell (PAEC) dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension. Canonical transient receptor potential (TRPC) channels, a family of Ca2+-permeable channels, play an important role in various diseases. However, the effect and mechanism of TRPCs on PH development have not been fully elucidated. Among the TRPC family members, TRPC4 expression was markedly upregulated in PAECs from hypoxia combined with SU5416 (HySu)-induced PH mice and monocrotaline (MCT)-treated PH rats, as well as in hypoxia-exposed PAECs, suggesting that TRPC4 in PAECs may participate in the occurrence and development of PH. In this study, we aimed to investigate whether TRPC4 in PAECs has an aggravating effect on PH and elucidate the molecular mechanisms. We observed that hypoxia treatment promoted PAEC apoptosis through a caspase-12/endoplasmic reticulum stress (ERS)-dependent pathway. Knockdown of TRPC4 attenuated hypoxia-induced apoptosis and caspase-3/caspase-12 activity in PAECs. Accordingly, adeno-associated virus (AAV) serotype 6-mediated pulmonary endothelial TRPC4 silencing (AAV6-Tie-shRNA-TRPC4) or TRPC4 antagonist suppressed PH progression as evidenced by reduced right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, PAEC apoptosis and reactive oxygen species (ROS) production. Mechanistically, unbiased RNA sequencing (RNA-seq) suggested that TRPC4 deficiency suppressed the expression of the proapoptotic protein sushi domain containing 2 (Susd2) in hypoxia-exposed mouse PAECs. Moreover, TRPC4 activated hypoxia-induced PAEC apoptosis by promoting Susd2 expression. Therefore, inhibiting TRPC4 ameliorated PAEC apoptosis and hypoxic PH in animals by repressing Susd2 signaling, which may serve as a therapeutic target for the management of PH.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Células Endoteliales , Hipertensión Pulmonar , Hipoxia , Canales Catiónicos TRPC , Animales , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPC/genética , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/genética , Ratas , Hipoxia/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Masculino , Monocrotalina/toxicidad , Remodelación Vascular/genética , Modelos Animales de Enfermedad , Humanos , Transducción de Señal , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Células Cultivadas , Indoles , Pirroles
6.
J Hazard Mater ; 470: 134141, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583201

RESUMEN

Coal combustion is the major contributor to global toxic selenium (Se) emissions. Inorganic elements in coals significantly affect Se partitioning during combustion. This work confirmed that the calcium (Ca) in ash had a stronger relationship with Se retention at 1300 °C than other major elements. Ca oxide chemically reacted with gaseous Se, and its sintering densification slightly affected Se adsorption capacities (44.45 -1840.71→35.17 -1540.15 mg/kg) at 300 - 1300 °C. Therefore, Ca in coals was identified as having potential for hindering gaseous Se emissions, and coals with increased Ca contents (2.74→5.19 wt%) were used in a 350 MW unit. The decreased Se mass distribution (3.54%→2.63%) in flue gas at air preheater inlet (320 -362 °C) confirmed the effectiveness of increased Ca content on gaseous Se emission reduction. More gaseous Se further condensed and was chemically adsorbed by fly ash when passed through an electrostatic precipitator, resulting in a significant increase in the Se content of fly ash. Additionally, the corresponding Se leaching ratio decreased from 4.88 - 35.74% to 1.87 - 26.31%, indicating enhanced stability of Se enriched in fly ash. This research confirmed the feasibility and environmental safety of sequestration of gaseous Se from flue gas to fly ash by increasing the Ca content in coals.

7.
J Agric Food Chem ; 72(17): 9807-9817, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602350

RESUMEN

Ferulic acid (FA), predominantly existing in most cereals, can modulate the gut microbiome, but the influences of its metabolites on the microbial population and FA-transforming microorganisms are still unclear. In this study, FA and its potential phenolic metabolites were fermented in vitro for 24 h with the human fecal inoculum. A comparable short chain fatty acid (SCFA) production trend was observed in the presence and absence of substrates, suggesting limited contribution of FA mechanism to SCFA formation. Dihydroferulic acid, 3-(3,4-dihydroxyphenyl)propionic acid, and 3-(3-hydroxyphenyl)propionic acid were ascertained to be successive metabolites of FA, by tracking the intermediate variation. FA remarkably promoted the absolute abundances of total bacteria, while different metabolites affected bacterial growth of selective genera. Specific genera were identified as quantitatively correlating to the content of FA and its metabolites. Ultimately, FA-mediated gut microbiota modulation involves both the action of metabolizing microbes and the regulation effects of metabolites on bacterial growth.


Asunto(s)
Bacterias , Ácidos Cumáricos , Ácidos Grasos Volátiles , Heces , Fermentación , Microbioma Gastrointestinal , Ácidos Cumáricos/metabolismo , Humanos , Heces/microbiología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Ácidos Grasos Volátiles/metabolismo
8.
Acta Neuropathol Commun ; 12(1): 61, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637883

RESUMEN

We aimed to identify the druggable cell-intrinsic vulnerabilities and target-based drug therapies for PitNETs using the high-throughput drug screening (HTS) and genomic sequencing methods. We examined 9 patient-derived PitNET primary cells in HTS. Based on the screening results, the potential target genes were analyzed with genomic sequencing from a total of 180 PitNETs. We identified and verified one of the most potentially effective drugs, which targeted the Histone deacetylases (HDACs) both in in vitro and in vivo PitNET models. Further RNA sequencing revealed underlying molecular mechanisms following treatment with the representative HDACs inhibitor, Panobinostat. The HTS generated a total of 20,736 single-agent dose responses which were enriched among multiple inhibitors for various oncogenic targets, including HDACs, PI3K, mTOR, and proteasome. Among these drugs, HDAC inhibitors (HDACIs) were, on average, the most potent drug class. Further studies using in vitro, in vivo, and isolated PitNET primary cell models validated HDACIs, especially Panobinostat, as a promising therapeutic agent. Transcriptional surveys revealed substantial alterations to the Nrf2 signaling following Panobinostat treatment. Moreover, Nrf2 is highly expressed in PitNETs. The combination of Panobinostat and Nrf2 inhibitor ML385 had a synergistic effect on PitNET suppression. The current study revealed a class of effective anti-PitNET drugs, HDACIs, based on the HTS and genomic sequencing. One of the representative compounds, Panobinostat, may be a potential drug for PitNET treatment via Nrf2-mediated redox modulation. Combination of Panobinostat and ML385 further enhance the effectiveness for PitNET treatment.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias Hipofisarias , Humanos , Panobinostat/farmacología , Panobinostat/uso terapéutico , Factor 2 Relacionado con NF-E2/genética , Tumores Neuroendocrinos/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Transducción de Señal
9.
Genome Med ; 16(1): 60, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658971

RESUMEN

BACKGROUND: Pituitary neuroendocrine tumors (PitNETs) are common gland neoplasms demonstrating distinctive transcription factors. Although the role of immune cells in PitNETs has been widely recognized, the precise immunological environment and its control over tumor cells are poorly understood. METHODS: The heterogeneity, spatial distribution, and clinical significance of macrophages in PitNETs were analyzed using single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry, and multiplexed quantitative immunofluorescence (QIF). Cell viability, cell apoptosis assays, and in vivo subcutaneous xenograft experiments have confirmed that INHBA-ACVR1B influences the process of tumor cell apoptosis. RESULTS: The present study evaluated scRNA-seq data from 23 PitNET samples categorized into 3 primary lineages. The objective was to explore the diversity of tumors and the composition of immune cells across these lineages. Analyzed data from scRNA-seq and 365 bulk RNA sequencing samples conducted in-house revealed the presence of three unique subtypes of tumor immune microenvironment (TIME) in PitNETs. These subtypes were characterized by varying levels of immune infiltration, ranging from low to intermediate to high. In addition, the NR5A1 lineage is primarily associated with the subtype characterized by limited infiltration of immune cells. Tumor-associated macrophages (TAMs) expressing CX3CR1+, C1Q+, and GPNMB+ showed enhanced contact with tumor cells expressing NR5A1 + , TBX19+, and POU1F1+, respectively. This emphasizes the distinct interaction axes between TAMs and tumor cells based on their lineage. Moreover, the connection between CX3CR1+ macrophages and tumor cells via INHBA-ACVR1B regulates tumor cell apoptosis. CONCLUSIONS: In summary, the different subtypes of TIME and the interaction between TAM and tumor cells offer valuable insights into the control of TIME that affects the development of PitNET. These findings can be utilized as prospective targets for therapeutic interventions.


Asunto(s)
Macrófagos , Tumores Neuroendocrinos , Neoplasias Hipofisarias , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/inmunología , Tumores Neuroendocrinos/metabolismo , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/inmunología , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Fenotipo , Apoptosis/genética , Linaje de la Célula/genética
11.
Environ Sci Pollut Res Int ; 31(18): 27286-27303, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38507168

RESUMEN

Data mining by machine learning (ML) has recently come into application in heavy metals purification from wastewater, especially in exploring lead removal by biochar that prepared using tube furnace (TF-C) and fluidized bed (FB-C) pyrolysis methods. In this study, six ML models including Random Forest Regression (RFR), Gradient Boosting Regression (GBR), Support Vector Regression (SVR), Kernel Ridge Regression (KRR), Extreme Gradient Boosting (XGB), and Light Gradient Boosting Machine (LGBM) were employed to predict lead adsorption based on a dataset of 1012 adsorption experiments, comprising 422 TF-C groups from our experiments and 590 FB-C groups from literatures. The XGB model showed superior accuracy and predictive performance for adsorption, achieving R2 values for TF-C (0.992) and FB-C (0.981), respectively. Contrasting inferior results were observed in other models, including RF (0.962 and 0.961), GBR (0.987 and 0.975), SVR (0.839 and 0.763), KRR (0.817 and 0.881), and LGBM (0.975 and 0.868). Additionally, a hybrid dataset combining both biochars in Pb adsorption also indicated high accuracy (0.972) as obtained from XGB model. The investigation revealed that the influence of char characteristics and adsorption conditions on Pb adsorption differs between the two biochar. Specific char characteristics, particularly nitrogen content, significantly influence lead adsorption in both biochar. Interestingly, the influence of pyrolysis temperature (PT) on lead adsorption is found to be greater for TF-C than for FB-C. Consequently, careful consideration of PT is crucial when preparing TF-C biochar. These findings offer practical guidance for optimizing biochar preparation conditions during heavy metal removal from wastewater.


Asunto(s)
Carbón Orgánico , Plomo , Aprendizaje Automático , Carbón Orgánico/química , Plomo/química , Adsorción , Contaminantes Químicos del Agua/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-38498746

RESUMEN

Intracortical brain-computer interfaces offer superior spatial and temporal resolutions, but face challenges as the increasing number of recording channels introduces high amounts of data to be transferred. This requires power-hungry data serialization and telemetry, leading to potential tissue damage risks. To address this challenge, this paper introduces an event-based neural compressive telemetry (NCT) consisting of 8 channel-rotating Δ-ADCs, an event-driven serializer supporting a proposed ternary address event representation protocol, and an event-based LVDS driver. Leveraging a high sparsity of extracellular spikes and high spatial correlation of the high-density recordings, the proposed NCT achieves a compression ratio of >11.4×, while consumes only 1 µW per channel, which is 127× more efficient than state of the art. The NCT well preserves the spike waveform fidelity, and has a low normalized RMS error <23% even with a spike amplitude down to only 31 µV.

14.
Oncologist ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38547052

RESUMEN

BACKGROUND: To investigate the efficacy and toxicity after long-term follow-up of anti-PD-1 antibody in advanced melanoma with predominantly acral and mucosal subtypes. METHODS AND PATIENTS: In the POLARIS-01 phase II trial, 128 Chinese patients with advanced melanoma refractory to standard therapy received toripalimab until disease progression or unacceptable toxicity for ≤2 years. For those who progressed after discontinuation due to 2-year treatment completion, rechallenge was allowed. The primary objectives were safety and overall response rate (ORR). RESULTS: As of February 8, 2021, ORR was 17.3% (95% CI: 11.2-25.0) evaluated by the independent radiologic review committee. The median overall survival (OS) for patients with known melanoma subtypes was 16.3 m for acral, 41.5 m for nonacral cutaneous, and 10.3 m for mucosal melanoma. Thereafter, the evaluation was continued by investigators. As of November 4, 2022, 5 years after the last enrollment, median duration of response was 15.6 months (range, 3.7-64.5+), median progression-free survival (PFS) was 3.5 months (95% CI, 2.2-5.3), and 60-month OS rate was 28.5% (95% CI: 20.2-37.2). Thirteen patients completed a 2-year treatment of toripalimab, with the subtypes of acral (2/13), non-acral cutaneous (4/13), mucosal (3/13) and unknown primary (4/13). Five patients were rechallenged. Four of them, all of whom were non-mucosal, completed the rechallenge course of 2 years with PFS ≥ 24 months. CONCLUSIONS: This is the largest prospective anti-PD-1 trial with mature data in advanced melanoma in China. Toripalimab demonstrated a manageable safety profile and durable clinical response in Chinese patients with metastatic melanoma who had failed in standard therapy. Immunotherapy seems less efficacious for long-term responders with mucosal primaries as rechallenge therapy.

15.
BMC Infect Dis ; 24(1): 361, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549089

RESUMEN

BACKGROUND: Pancreaticoduodenectomy (PD) is a complex procedure and easily accompanied by healthcare-associated infections (HAIs). This study aimed to assess the impact of PBD on postoperative infections and clinical outcomes in PD patients. METHODS: The retrospective cohort study were conducted in a tertiary hospital from January 2013 to December 2022. Clinical and epidemiological data were collected from HAIs surveillance system and analyzed. RESULTS: Among 2842 patients who underwent PD, 247 (8.7%) were diagnosed with HAIs, with surgical site infection being the most frequent type (n = 177, 71.7%). A total of 369 pathogenic strains were detected, with Klebsiella pneumoniae having the highest proportion, followed by Enterococcu and Escherichia coli. Although no significant association were observed generally between PBD and postoperative HAIs, subgroup analysis revealed that PBD was associated with postoperative HAIs in patients undergoing robotic PD (aRR = 2.174; 95% CI:1.011-4.674; P = 0.047). Prolonging the interval between PBD and PD could reduce postoperative HAIs in patients with cholangiocarcinoma (≥4 week: aRR = 0.292, 95% CI 0.100-0.853; P = 0.024) and robotic PD (≤2 week: aRR = 3.058, 95% CI 1.178-7.940; P = 0.022). PBD was also found to increase transfer of patients to ICU (aRR = 1.351; 95% CI 1.119-1.632; P = 0.002), extended length of stay (P < 0.001) and postoperative length of stay (P = 0.004). CONCLUSION: PBD does not exhibit a significant association with postoperative HAIs or other outcomes. However, the implementation of robotic PD, along with a suitable extension of the interval between PBD and PD, appear to confer advantages concerning patients' physiological recuperation. These observations suggest potential strategies that may contribute to enhanced patient outcomes.


Asunto(s)
Infección Hospitalaria , Pancreaticoduodenectomía , Humanos , Estudios Retrospectivos , Pancreaticoduodenectomía/efectos adversos , Pancreaticoduodenectomía/métodos , Cuidados Preoperatorios/métodos , Drenaje/métodos , Infección Hospitalaria/epidemiología , Infección Hospitalaria/etiología , Atención a la Salud , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Resultado del Tratamiento
16.
Artículo en Inglés | MEDLINE | ID: mdl-38437070

RESUMEN

A near-field galvanic coupled transdural telemetry ASICs for intracortical brain-computer interfaces is presented. The proposed design features a two channels transmitter and three channels receiver (2TX-3RX) topology, which introduces spatial diversity to effectively mitigate misalignments (both lateral and rotational) between the brain and the skull and recovers the path loss by 13 dB when the RX is in the worst-case blind spot. This spatial diversity also allows the presented telemetry to support the spatial division multiplexing required for a high-capacity multi-implant distributed network. It achieves a signal-to-interference ratio of 12 dB, even with the adjacent interference node placed only 8 mm away from the desired link. While consuming only 0.33 mW for each channel, the presented RX achieves a wide bandwidth of 360 MHz and a low input referred noise of 13.21 nV/√Hz. The presented telemetry achieves a 270 Mbps data rate with a BER<10-6 and an energy efficiency of 3.4 pJ/b and 3.7 pJ/b, respectively. The core footprint of the TX and RX modules is only 100 and 52 mm2, respectively, minimizing the invasiveness of the surgery. The proposed transdural telemetry system has been characterized ex-vivo with a 7-mm thick porcine tissue.

17.
Nanoscale ; 16(15): 7387-7395, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38545886

RESUMEN

Inorganic cesium lead bromide nanocrystals (CsPbBr3 NCs) hold promising prospects for high performance green light-emitting diodes (LEDs) due to their exceptional color purity and high luminescence efficiency. However, the common ligands employed for passivating these indispensable NCs, such as long-chain organic ligands like oleic acid and oleylamine (OA/OAm), display highly dynamic binding and electronic insulating issues, thereby resulting in a low efficiency of the as-fabricated LEDs. Herein, we report a new zwitterionic short-branched alkyl sulfobetaine ligand, namely trioctyl(propyl-3-sulfonate) ammonium betaine (TOAB), to in situ passivate CsPbBr3 NCs via a feasible one-step solution synthesis, enabling efficiency improvement of CsPbBr3 NC-based LEDs. The zwitterionic TOAB ligand not only strengthened the surface passivation of CsPbBr3 NCs with a high photoluminescence quantum yield (PLQY) of 97%, but also enhanced the carrier transport in the fabricated CsPbBr3 NC thin films due to the short-branched alkyl design. Consequently, CsPbBr3 NCs passivated with TOAB achieved a green LED with an external quantum efficiency (EQE) of 7.3% and a maximum luminance of 5716 cd m-2, surpassing those of LEDs based on insulating long-chain ligand-passivated NCs. Our work provides an effective surface passivation ligand design to enhance the performance of CsPbBr3 NC-based LEDs.

18.
Angew Chem Int Ed Engl ; 63(17): e202400424, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38433094

RESUMEN

Halide superionic conductors (SICs) are drawing significant research attention for their potential applications in all-solid-state batteries. A key challenge in developing such SICs is to explore and design halide structural frameworks that enable rapid ion movement. In this work, we show that the close-packed anion frameworks shared by traditional halide ionic conductors face intrinsic limitations in fast ion conduction, regardless of structural regulation. Beyond the close-packed anion frameworks, we identify that the non-close-packed anion frameworks have great potential to achieve superionic conductivity. Notably, we unravel that the non-close-packed UCl3-type framework exhibit superionic conductivity for a diverse range of carrier ions, including Li+, Na+, K+, and Ag+, which are validated through both ab initio molecular dynamics simulations and experimental measurements. We elucidate that the remarkable ionic conductivity observed in the UCl3-type framework structure stems from its significantly more distorted site and larger diffusion channel than its close-packed counterparts. By employing the non-close-packed anion framework as the key feature for high-throughput computational screening, we also identify LiGaCl3 as a promising candidate for halide SICs. These discoveries provide crucial insights for the exploration and design of novel halide SICs.

19.
ACS Omega ; 9(8): 9321-9330, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434889

RESUMEN

To improve the cleanliness of coal-fired power plants' particulate matter emissions, a novel device (single-channel slit bubbling particle removal device (SCSB-PRD)) is proposed to improve the wet flue gas desulfurization system's (WFGDs) collaborative particle removal effect. Actual coal-fired flue gas was used to test the particle removal performance. The results showed that the flue gas temperature had no obvious effect on the scrubbing effect of the SCSB-PRD. The scrubbing space, scrubbing liquid volume, and flue gas flow rate effectively changed the gas-liquid flow state, and the bubbling state was the key factor in particle removal. The jet-bubbling contact state was more conducive to removing particles than the foam bubbling state. The jet-bubbling state improved the removal efficiency of fine particles by approximately 30% compared to the foam bubbling state. The device operated in a single stage, and the removal performance of the particulate matter reached more than 60%. Even the submicron particles had a satisfactory removal performance of greater than 50%. The particulate matter concentration at the outlet of the WFGDs was reduced to less than 10 mg/m3, which provides a feasible transformation path for ultraultra-low emissions of particulate matter from coal-fired power plants.

20.
Anal Chim Acta ; 1296: 342332, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401940

RESUMEN

Isoniazid (INH) is crucial in the treatment of tuberculosis; however, its overuse may induce significant gastrointestinal and hepatic side effects. On October 27, 2017, the International Agency for Research on Cancer, under the auspices of the World Health Organization, published a list of carcinogens for preliminary collation and reference. Isoniazid was categorized as a Group 3 carcinogen. The efficient detection of INH poses an important and challenging task. In this study, a "synergistic effect" is incorporated into the pillar (Yamagishi and Ogoshi, 2018) [5] arene-based macrocyclic host (DPA) by strategically attaching bis-p-hydroxybenzoic acid groups to the opposite ends of the pillar (Yamagishi and Ogoshi, 2018) [5] arene. This combination endows DPA with a reversible and selective fluorescence response to isoniazid. Additionally, DPA exhibits excellent analytical capabilities for isoniazid, including speed and selectivity, with a detection limit as low as 4.85 nM. Concurrently, DPA can self-assemble into a microsphere structure, which is convertible into micrometer-sized tubular structures through host-guest interactions with isoniazid. The introduction of a competitive guest, trimethylamine, enables the reversion to its microsphere structure. Consequently, this study presents an innovative and straightforward synthetic approach for smart materials that facilitates the reversible morphological transition between microspheres and microtubes in response to external chemical stimuli. This discovery provides a valuable strategy for designing "synergistic effects" in constructing trace-level isoniazid-responsive interfaces, with potential applications across various fields, such as controlled drug delivery.


Asunto(s)
Materiales Inteligentes , Isoniazida , Sistemas de Liberación de Medicamentos , Microesferas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...