Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38397546

RESUMEN

To investigate the core fungal community succession and its effects of volatile compound production during different stages (D-1, D-2, D-3, E-4, E-5, and E-6) of Hengshui Laobaigan Baijiu, high-throughput sequencing (HTS) was carried out, accompanied by the identification and quantification of the volatile flavor compounds using headspace solid-phase coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). HTS results demonstrated that the fungal community of stage D-1 was similar to that of E-4 after adding Daqu, while the richness and diversity of the fungal community were most prominent at stage E-6. Moreover, the addition of Daqu at the beginning of Ercha fermentation resulted in a significant increase in the relative abundances of the fungal community at the genus level, setting the stage for the production of volatile compounds. GC-MS analysis revealed the presence of a total of 45 volatile compounds. Combining the GC-MS result with the heat map and principal component analysis (PCA), the concentrations of volatile compounds were highest in stage E-5. Meanwhile, concentrations of esters, especially ethyl acetate, ethyl lactate, isoamyl acetate and ethyl hexanoate, were high in both stages E-5 and E-6. This indicated that stage E-5 was crucial to the fermentation process of Laobaigan Baijiu. Three fungal genera (Saccharomyces, Candida, and Pichia) were indicated as the core microbiota for the production of the main volatile flavor compounds of Laobaigan Baijiu through partial least square (PLS) analysis. The information provided in this study offered valuable insights into the fermentation mechanism of Laobaigan Baijiu, thereby serving as a theoretical framework for enhancing the quality of Baijiu and realizing cost-effective production.

2.
ACS Appl Mater Interfaces ; 15(43): 50166-50173, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37870466

RESUMEN

Electrochemical cells that incorporate aluminum (Al) as the active material have become increasingly popular due to the advantages of high energy density, cost-effectiveness, and superior safety features. Despite the progress made by research groups in developing rechargeable Al//MxOy (M = Mn, V, etc.) cells using an aqueous Al trifluoromethanesulfonate-based electrolyte, the reactions occurring at the Al anode are still not fully understood. In this study, we explore the artificial solid electrolyte interphase (ASEI) on the Al anode by soaking it in AlCl3/urea ionic liquid. Surprisingly, our findings reveal that the ASEI actually promotes the corrosion of Al by providing chloride anions rather than facilitating the transport of Al3+ ions during charge/discharge cycles. Importantly, the ASEI significantly enhances the cycling stability and activity of Al cells. The primary reactions occurring at the Al anode during the charge/discharge cycle were determined to be irreversible oxidation and gas evolution. Furthermore, we demonstrate the successful realization of urea-treated Al (UTAl)//AlxMnO2 cells (discharge operating voltage of ∼1.45 V and specific capacity of 280 mAh/g), providing a platform to investigate the underlying mechanisms of these cells further. Overall, our work highlights the importance of ASEI in controlling the corrosion of Al in aqueous electrolytes, emphasizing the need for the further development of electrolytic materials that facilitate the transport of Al3+ ions in rechargeable Al batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...