Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1549-1557, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621938

RESUMEN

The dichloromethane fraction of Kadsura heteroclita roots was separated and purified by chromatographic techniques(e.g., silica gel, Sephadex LH-20, ODS, MCI column chromatography) and semi-preparative HPLC. Twenty compounds were isolated from K. heteroclita, and their structures were identified by NMR, MS, UV, and X-ray single crystal diffraction techniques. Twenty compounds were isolated from K. heteroclita, which were identified as xuetongdilactone G(1), mallomacrostin C(2), 3,4-seco(24Z)-cychmrt-4(28),24-diene-3,26-dioic acid 3-methyl ester(3), nigranoic acid(4), methyl ester schizanlactone E(5), schisandronic acid(6), heteroclic acid(7), wogonin(8),(2R,3R)-4'-O-methyldihydroquercetin(9), 15,16-bisnor-13-oxo-8(17),11E-labdadien-19-oic acid(10), stigmast-4-ene-6ß-ol-3-one(11), psoralen(12),(1R,2R,4R)-trihydroxy-p-menthane(13), homovanillyl alcohol(14), 2-(4-hydroxyphenyl)-ethanol(15), coniferaldehyde(16),(E)-7-(4-hydroxy-3-methoxyphenyl)-7-methylbut-8-en-9-one(17), acetovanillone(18), vanillic acid(19) and vanillin(20). Compound 1 is a new compound named xuetongdilactone G. Compounds 2-3 and 8-20 are isolated from K. heteroclita for the first time.


Asunto(s)
Kadsura , Kadsura/química , Espectroscopía de Resonancia Magnética , Raíces de Plantas/química , Ésteres/análisis
2.
Int J Ophthalmol ; 17(1): 25-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38239938

RESUMEN

AIM: To provide the direct evidence for the crucial role of trimethylamine N-oxide (TMAO) in vascular permeability and endothelial cell dysfunction under diabetic condition. METHODS: The role of TMAO on the in vitro biological effect of human retinal microvascular endothelial cells (HRMEC) under high glucose conditions was tested by a cell counting kit, wound healing, a transwell and a tube formation assay. The inflammation-related gene expression affected by TMAO was tested by real-time polymerase chain reaction (RT-PCR). The expression of the cell junction was measured by Western blotting (WB) and immunofluorescence staining. In addition, two groups of rat models, diabetic and non-diabetic, were fed with normal or 0.1% TMAO for 16wk, and their plasma levels of TMAO, vascular endothelial growth factor (VEGF), interleukin (IL)-6 and tumor necrosis factor (TNF)-α were tested. The vascular permeability of rat retinas was measured using FITC-Dextran, and the expression of zonula occludens (ZO)-1 and claudin-5 in rat retinas was detected by WB or immunofluorescence staining. RESULTS: TMAO administration significantly increased the cell proliferation, migration, and tube formation of primary HRMEC either in normal or high-glucose conditions. RT-PCR showed elevated inflammation-related gene expression of HRMEC under TMAO stimulation, while WB or immunofluorescence staining indicated decreased cell junction ZO-1 and occludin expression after high-glucose and TMAO treatment. Diabetic rats showed higher plasma levels of TMAO as well as retinal vascular leakage, which were even higher in TMAO-feeding diabetic rats. Furthermore, TMAO administration increased the rat plasma levels of VEGF, IL-6 and TNF-α while decreasing the retinal expression levels of ZO-1 and claudin-5. CONCLUSION: TMAO enhances the proliferation, migration, and tube formation of HRMEC, as well as destroys their vascular integrity and tight connection. It also regulates the expression of VEGF, IL-6, and TNF-α.

3.
Molecules ; 27(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35744788

RESUMEN

Two new A-ring contracted triterpenoids, madengaisu A and madengaisu B, and one undescribed ent-kaurane diterpenoid, madengaisu C, along with 20 known compounds were isolated from the roots of Potentilla freyniana Bornm. The structures were elucidated using extensive spectroscopic techniques, including 1D and 2D-NMR, HR-ESI-MS, ECD spectra, IR, and UV analysis. Moreover, all isolated constituents were evaluated for their anti-proliferative activity against RA-FLS cells and cytotoxic activities against the human cancer cell lines Hep-G2, HCT-116, BGC-823, and MCF-7. Ursolic acid and pomolic acid displayed moderate inhibitory activity in RA-FLS cells with IC50 values of 24.63 ± 1.96 and 25.12 ± 1.97 µM, respectively. Hyptadienic acid and 2α,3ß-dihydroxyolean-12-en-28-oic acid 28-O-ß-d-glucopyranoside exhibited good cytotoxicity against Hep-G2 cells with IC50 values of 25.16 ± 2.55 and 17.66 ± 1.82 µM, respectively. In addition, 2α,3ß-dihydroxyolean-13(18)-en-28-oic acid and alphitolic acid were observed to inhibit HCT-116 cells (13.25 ± 1.65 and 21.62 ± 0.33 µM, respectively), while madengaisu B and 2α,3ß-dihydroxyolean-13(18)-en-28-oic acid showed cytotoxic activities against BGC-823 cells with IC50 values of 24.76 ± 0.94 and 26.83 ± 2.52 µM, respectively, which demonstrated that triterpenes from P. freyniana may serve as therapeutic agents for RA and cancer treatment.


Asunto(s)
Diterpenos de Tipo Kaurano , Potentilla , Triterpenos , Diterpenos de Tipo Kaurano/química , Células Hep G2 , Humanos , Estructura Molecular , Potentilla/química , Terpenos/farmacología , Triterpenos/química , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...