Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 27, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182890

RESUMEN

Tumor tissues consist of heterogeneous cells that originate from stem cells; however, their cell fate determination program remains incompletely understood. Using patient-derived organoids established from patients with advanced colorectal cancer (CRC), we evaluated the potential of olfactomedin 4 (OLFM4)+ stem cells to produce a bifurcated lineage of progenies with absorptive and secretory properties. In the early phases of organoid reconstruction, OLFM4+ cells preferentially gave rise to secretory cells. Additionally, we found that Paneth-like cells, which do not exist in the normal colon, were induced in response to Notch signaling inhibition. Video recordings of single OLFM4+ cells revealed that organoids containing Paneth-like cells were effectively propagated and that their selective ablation led to organoid collapse. In tumor tissues, Paneth-like cells were identified only in the region where tumor cells lost cell adhesion. These findings indicate that Paneth-like cells are directly produced by OLFM4+ stem cells and that their interaction contributes to tumor formation by providing niche factors. This study reveals the importance of the cell fate specification program for building a complete tumor cellular ecosystem, which might be targeted with novel therapeutics.


Asunto(s)
Neoplasias Colorrectales , Ecosistema , Humanos , Células Madre , Proliferación Celular , Organoides , Factor Estimulante de Colonias de Granulocitos
2.
EMBO J ; 42(22): e114032, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37781951

RESUMEN

Bone marrow-derived cells (BMDCs) infiltrate hypoxic tumors at a pre-angiogenic state and differentiate into mature macrophages, thereby inducing pro-tumorigenic immunity. A critical factor regulating this differentiation is activation of SREBP2-a well-known transcription factor participating in tumorigenesis progression-through unknown cellular mechanisms. Here, we show that hypoxia-induced Golgi disassembly and Golgi-ER fusion in monocytic myeloid cells result in nuclear translocation and activation of SREBP2 in a SCAP-independent manner. Notably, hypoxia-induced SREBP2 activation was only observed in an immature lineage of bone marrow-derived cells. Single-cell RNA-seq analysis revealed that SREBP2-mediated cholesterol biosynthesis was upregulated in HSCs and monocytes but not in macrophages in the hypoxic bone marrow niche. Moreover, inhibition of cholesterol biosynthesis impaired tumor growth through suppression of pro-tumorigenic immunity and angiogenesis. Thus, our findings indicate that Golgi-ER fusion regulates SREBP2-mediated metabolic alteration in lineage-specific BMDCs under hypoxia for tumor progression.


Asunto(s)
Monocitos , Neoplasias , Humanos , Monocitos/metabolismo , Médula Ósea , Colesterol/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Hipoxia
3.
Nat Commun ; 14(1): 4521, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607907

RESUMEN

Oncogene-induced DNA replication stress (RS) and consequent pathogenic R-loop formation are known to impede S phase progression. Nonetheless, cancer cells continuously proliferate under such high-stressed conditions through incompletely understood mechanisms. Here, we report taurine upregulated gene 1 (TUG1) long noncoding RNA (lncRNA), which is highly expressed in many types of cancers, as an important regulator of intrinsic R-loop in cancer cells. Under RS conditions, TUG1 is rapidly upregulated via activation of the ATR-CHK1 signaling pathway, interacts with RPA and DHX9, and engages in resolving R-loops at certain loci, particularly at the CA repeat microsatellite loci. Depletion of TUG1 leads to overabundant R-loops and enhanced RS, leading to substantial inhibition of tumor growth. Our data reveal a role of TUG1 as molecule important for resolving R-loop accumulation in cancer cells and suggest targeting TUG1 as a potent therapeutic approach for cancer treatment.


Asunto(s)
Neoplasias , Estructuras R-Loop , Humanos , Replicación del ADN/genética , Proliferación Celular/genética , Neoplasias/genética , Repeticiones de Microsatélite/genética , Taurina
4.
Biochem Biophys Res Commun ; 674: 183-189, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37450958

RESUMEN

Mitochondrial one-carbon metabolism is crucial for embryonic development and tumorigenesis, as it supplies one-carbon units necessary for nucleotide synthesis and rapid cell proliferation. However, its contribution to adult tissue homeostasis remains largely unknown. To examine its role in adult tissue homeostasis, we specifically investigated mammary gland development during pregnancy, as it involves heightened cell proliferation. We discovered that MTHFD2, a mitochondrial one-carbon metabolic enzyme, is expressed in both luminal and basal/myoepithelial cell layers, with upregulated expression during pregnancy. Using the mouse mammary tumor virus (MMTV)-Cre recombinase system, we generated mice with a specific mutation of Mthfd2 in mammary epithelial cells. While the mutant mice were capable of properly nurturing their offspring, the pregnancy-induced expansion of mammary glands was significantly delayed. This indicates that MTHFD2 contributes to the rapid development of mammary glands during pregnancy. Our findings shed light on the role of mitochondrial one-carbon metabolism in facilitating rapid cell proliferation, even in the context of the adult tissue homeostasis.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Metilenotetrahidrofolato Deshidrogenasa (NADP) , Animales , Femenino , Ratones , Embarazo , Proliferación Celular , Células Epiteliales/metabolismo , Hidrolasas/metabolismo , Glándulas Mamarias Animales/metabolismo , Ratones Transgénicos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo
5.
Breast Cancer Res ; 25(1): 21, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810117

RESUMEN

BACKGROUND: The intratumor heterogeneity (ITH) of cancer cells plays an important role in breast cancer resistance and recurrence. To develop better therapeutic strategies, it is necessary to understand the molecular mechanisms underlying ITH and their functional significance. Patient-derived organoids (PDOs) have recently been utilized in cancer research. They can also be used to study ITH as cancer cell diversity is thought to be maintained within the organoid line. However, no reports investigated intratumor transcriptomic heterogeneity in organoids derived from patients with breast cancer. This study aimed to investigate transcriptomic ITH in breast cancer PDOs. METHODS: We established PDO lines from ten patients with breast cancer and performed single-cell transcriptomic analysis. First, we clustered cancer cells for each PDO using the Seurat package. Then, we defined and compared the cluster-specific gene signature (ClustGS) corresponding to each cell cluster in each PDO. RESULTS: Cancer cells were clustered into 3-6 cell populations with distinct cellular states in each PDO line. We identified 38 clusters with ClustGS in 10 PDO lines and used Jaccard similarity index to compare the similarity of these signatures. We found that 29 signatures could be categorized into 7 shared meta-ClustGSs, such as those related to the cell cycle or epithelial-mesenchymal transition, and 9 signatures were unique to single PDO lines. These unique cell populations appeared to represent the characteristics of the original tumors derived from patients. CONCLUSIONS: We confirmed the existence of transcriptomic ITH in breast cancer PDOs. Some cellular states were commonly observed in multiple PDOs, whereas others were specific to single PDO lines. The combination of these shared and unique cellular states formed the ITH of each PDO.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Transcriptoma , Mama , Perfilación de la Expresión Génica , Organoides/metabolismo
6.
eNeuro ; 9(3)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35523582

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder that affects upper and lower motor neurons; however, its pathomechanism has not been fully elucidated. Using a comprehensive phosphoproteomic approach, we have identified elevated phosphorylation of Collapsin response mediator protein 1 (Crmp1) at serine 522 in the lumbar spinal cord of ALS model mice overexpressing a human superoxide dismutase mutant (SOD1G93A). We investigated the effects of Crmp1 phosphorylation and depletion in SOD1G93A mice using Crmp1S522A (Ser522→Ala) knock-in (Crmp1ki/ki ) mice in which the S522 phosphorylation site was abolished and Crmp1 knock-out (Crmp1-/-) mice, respectively. Crmp1ki/ki /SOD1G93A mice showed longer latency to fall in a rotarod test while Crmp1-/-/SOD1G93A mice showed shorter latency compared with SOD1G93A mice. Survival was prolonged in Crmp1ki/ki /SOD1G93A mice but not in Crmp1-/-/SOD1G93A mice. In agreement with these phenotypic findings, residual motor neurons and innervated neuromuscular junctions (NMJs) were comparatively well-preserved in Crmp1ki/ki /SOD1G93A mice without affecting microglial and astroglial pathology. Pathway analysis of proteome alterations showed that the sirtuin signaling pathway had opposite effects in Crmp1ki/ki /SOD1G93A and Crmp1-/-/SOD1G93A mice. Our study indicates that modifying CRMP1 phosphorylation is a potential therapeutic strategy for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Fosforilación , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo
7.
Cancer Sci ; 113(8): 2693-2703, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35585758

RESUMEN

Colorectal cancer (CRC) is a heterogenous disease, and patients have differences in therapeutic response. However, the mechanisms underlying interpatient heterogeneity in the response to chemotherapeutic agents remain to be elucidated, and molecular tumor characteristics are required to select patients for specific therapies. Patient-derived organoids (PDOs) established from CRCs recapitulate various biological characteristics of tumor tissues, including cellular heterogeneity and the response to chemotherapy. Patient-derived organoids established from CRCs show various morphologies, but there are no criteria for defining these morphologies, which hampers the analysis of their biological significance. Here, we developed an artificial intelligence (AI)-based classifier to categorize PDOs based on microscopic images according to their similarity in appearance and classified tubular adenocarcinoma-derived PDOs into six types. Transcriptome analysis identified differential expression of genes related to cell adhesion in some of the morphological types. Genes involved in ribosome biogenesis were also differentially expressed and were most highly expressed in morphological types showing CRC stem cell properties. We identified an RNA polymerase I inhibitor, CX-5641, to be an upstream regulator of these type-specific gene sets. Notably, PDO types with increased expression of genes involved in ribosome biogenesis were resistant to CX-5461 treatment. Taken together, these results uncover the biological significance of the morphology of PDOs and provide novel indicators by which to categorize CRCs. Therefore, the AI-based classifier is a useful tool to support PDO-based cancer research.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias Colorrectales , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Antineoplásicos/farmacología , Inteligencia Artificial , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Humanos , Organoides/metabolismo
8.
STAR Protoc ; 2(4): 100780, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34585151

RESUMEN

Patient-derived organoids (PDOs) recapitulate the cellular heterogeneity of the original colorectal tumor tissue. Here, we describe a protocol to generate genetically modified PDOs to investigate cancer stem cells. This protocol uses the CRISPR-Cas9 system to knock-in the IRES-EGFP-P2A-iCaspase9 cassette into the 3' UTR of the potential cancer stem cell marker gene, which allows us to investigate their potential for self-replication and pluripotency. We describe the procedure for generating mutant PDOs and their application for stem cell research. For complete details on the generation and use of this protocol, please refer to Okamoto et al. Okamoto et al. (2021).


Asunto(s)
Sistemas CRISPR-Cas/genética , Neoplasias Colorrectales , Edición Génica/métodos , Técnicas de Sustitución del Gen/métodos , Organoides/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Humanos , Células Madre Neoplásicas/citología , Células Tumorales Cultivadas
9.
J Pathol ; 255(2): 177-189, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34184756

RESUMEN

Genetically engineered mice have been the gold standard in modeling tumor development. Recent studies have demonstrated that genetically engineered organoids can develop subcutaneous tumors in immunocompromised mice, at least for organs that prefer predominant driver mutations for tumorigenesis. To further substantiate this concept, the fallopian tube (FT), a major cell of origin of ovarian high-grade serous carcinoma (HGSC), which almost invariably carries TP53 mutations, was investigated for p53 inactivation-driven tumorigenesis. Murine FT organoids subjected to lentiviral Cre-mediated Trp53 deletion did not develop tumors. However, subsequent suppression of Pten and simultaneous induction of mutant Pik3ca led to the development of carcinoma in situ and HGSC-like tumors, respectively, whereas concurrent deletion of Apc resulted in the development of benign cysts, mirroring frequent activation of the PI3K/AKT axis and the marginal impact of Wnt pathway activation in HGSC. Consistent with the frequent activation of the RAS pathway in HGSC, mutant Kras cooperated with Trp53 deletion for the development of tumors, which unexpectedly contained sarcoma cells in addition to carcinoma cells, despite the epithelial origin of the inoculated organoids. This finding is in sharp contrast with the exclusive adenocarcinoma development from gastrointestinal organoids with the same genotype reported in previous studies, suggesting a tissue-specific epithelial-mesenchymal transition program. In tumor-derived organoids, the Cre-mediated recombination rate reached 100% for Trp53 but not for the other genes, highlighting the advantage of p53 inactivation in FT tumorigenesis. The Trp53 wildtype FT organoids expressing the mutant Kras developed sarcoma and carcinoma upon Cdkn2a suppression and Tgfbr2 deletion, respectively, revealing novel pro-tumorigenic genetic cooperation and critical roles of TGF-ß signaling for epithelial-mesenchymal transition in FT-derived tumorigenesis. Collectively, the organoid-based approach represents a shortcut to tumorigenesis and provides novel insights into the relationships among genotype, cell type, and tumor phenotype underlying tumorigenesis. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Carcinogénesis/patología , Trompas Uterinas/patología , Neoplasias Experimentales/patología , Organoides/patología , Lesiones Precancerosas/patología , Animales , Carcinogénesis/genética , Carcinoma Epitelial de Ovario , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Femenino , Ratones , Neoplasias Experimentales/genética , Lesiones Precancerosas/genética , Proteína p53 Supresora de Tumor/genética
10.
Stem Cell Reports ; 16(4): 954-967, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33711267

RESUMEN

Metastasis is the major cause of cancer-related death, but whether metastatic lesions exhibit the same cellular composition as primary tumors has yet to be elucidated. To investigate the cellular heterogeneity of metastatic colorectal cancer (CRC), we established 72 patient-derived organoids (PDOs) from 21 patients. Combined bulk transcriptomic and single-cell RNA-sequencing analysis revealed decreased gene expression of markers for differentiated cells in PDOs derived from metastatic lesions. Paradoxically, expression of potential intestinal stem cell markers was also decreased. We identified OLFM4 as the gene most strongly correlating with a stem-like cell cluster, and found OLFM4+ cells to be capable of initiating organoid culture growth and differentiation capacity in primary PDOs. These cells were required for the efficient growth of primary PDOs but dispensable for metastatic PDOs. These observations demonstrate that metastatic lesions have a cellular composition distinct from that of primary tumors; patient-matched PDOs are a useful resource for analyzing metastatic CRC.


Asunto(s)
Neoplasias Colorrectales/patología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Organoides/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/cirugía , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia , Organoides/patología
11.
Sci Rep ; 10(1): 17455, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060766

RESUMEN

RAS signaling is a promising target for colorectal cancer (CRC) therapy, and a variety of selective inhibitors have been developed. However, their use has often failed to demonstrate a significant benefit in CRC patients. Here, we used patient-derived organoids (PDOs) derived from a familial adenomatous polyposis (FAP) patient to analyze the response to chemotherapeutic agents targeting EGFR, BRAF and MEK. We found that PDOs carrying KRAS mutations were resistant to MEK inhibition, while those harboring the BRAF class 3 mutation were hypersensitive. We used a systematic approach to examine the phosphorylation of RAS effectors using reverse-phase protein array (RPPA) and found increased phosphorylation of MEK induced by binimetinib. A high basal level of ERK phosphorylation and its rebound activation after MEK inhibition were detected in KRAS-mutant PDOs. Notably, the phosphorylation of EGFR and AKT was more closely correlated with that of MEK than that of ERK. Transcriptome analysis identified MYC-mediated transcription and IFN signaling as significantly correlated gene sets in MEK inhibition. Our experiments demonstrated that RPPA analysis of PDOs, in combination with the genome and transcriptome, is a useful preclinical research platform to understand RAS signaling and provides clues for the development of chemotherapeutic strategies.


Asunto(s)
Poliposis Adenomatosa del Colon/metabolismo , Neoplasias Colorrectales/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Organoides/metabolismo , Proteínas ras/metabolismo , Adulto , Animales , Bencimidazoles/farmacología , Línea Celular Tumoral , Exoma , Humanos , Interferones/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos NOD , Mutación , Organoides/efectos de los fármacos , Fosforilación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Análisis de Secuencia de ARN , Transcriptoma
12.
Sci Rep ; 9(1): 14249, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582806

RESUMEN

Outer dense fibre 2 (Odf2 or ODF2) is a cytoskeletal protein required for flagella (tail)-beating and stability to transport sperm cells from testes to the eggs. There are infertile males, including human patients, who have a high percentage of decapitated and decaudated spermatozoa (DDS), whose semen contains abnormal spermatozoa with tailless heads and headless tails due to head-neck separation. DDS is untreatable in reproductive medicine. We report for the first time a new type of Odf2-DDS in heterozygous mutant Odf2+/- mice. Odf2+/- males were infertile due to haploinsufficiency caused by heterozygous deletion of the Odf2 gene, encoding the Odf2 proteins. Odf2 haploinsufficiency induced sperm neck-midpiece separation, a new type of head-tail separation, leading to the generation of headneck sperm cells or headnecks composed of heads with necks and neckless tails composed of only the main parts of tails. The headnecks were immotile but alive and capable of producing offspring by intracytoplasmic headneck sperm injection (ICSI). The neckless tails were motile and could induce capacitation but had no significant forward motility. Further studies are necessary to show that ICSI in humans, using headneck sperm cells, is viable and could be an alternative for infertile patients suffering from Odf2-DDS.


Asunto(s)
Haploinsuficiencia , Proteínas de Choque Térmico/genética , Infertilidad Masculina/genética , Cabeza del Espermatozoide/patología , Espermatozoides/patología , Animales , Eliminación de Gen , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Cabeza del Espermatozoide/metabolismo , Espermatozoides/metabolismo
13.
Commun Biol ; 2: 227, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31240265

RESUMEN

Proper regulation of epigenetic states of chromatin is crucial to achieve tissue-specific gene expression during embryogenesis. The lung-specific gene products, surfactant proteins B (SP-B) and C (SP-C), are synthesized in alveolar epithelial cells and prevent alveolar collapse. Epigenetic regulation of these surfactant proteins, however, remains unknown. Here we report that MCRIP1, a regulator of the CtBP transcriptional co-repressor, promotes the expression of SP-B and SP-C by preventing CtBP-mediated epigenetic gene silencing. Homozygous deficiency of Mcrip1 in mice causes fatal respiratory distress due to abnormal transcriptional repression of these surfactant proteins. We found that MCRIP1 interferes with interactions of CtBP with the lung-enriched transcriptional repressors, Foxp1 and Foxp2, thereby preventing the recruitment of the CtBP co-repressor complex to the SP-B and SP-C promoters and maintaining them in an active chromatin state. Our findings reveal a molecular mechanism by which cells prevent inadvertent gene silencing to ensure tissue-specific gene expression during organogenesis.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pulmón/metabolismo , Proteína B Asociada a Surfactante Pulmonar/metabolismo , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Animales , Línea Celular Tumoral , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Epitelio/patología , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Silenciador del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Pulmón/crecimiento & desarrollo , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Represoras/metabolismo , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/patología
14.
Cancer Sci ; 110(4): 1293-1305, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30724425

RESUMEN

Colorectal cancer (CRC) is caused by genetic alterations, and comprehensive sequence analyses have revealed the mutation landscapes. In addition to somatic changes, genetic variations are considered important factors contributing to tumor development; however, our knowledge on this subject is limited. Familial adenomatous polyposis coli (FAP) is an autosomal-dominant inherited disease caused by germline mutations in the adenomatous polyposis coli (APC) gene. FAP patients are classified into two major groups based on clinical manifestations: classical FAP (CFAP) and attenuated FAP (AFAP). In this study, we established 42 organoids from three CFAP patients and two AFAP patients. Comprehensive gene expression analysis demonstrated a close association between IFN/STAT signaling and the phenotypic features of FAP patients. Genetic disruption of Stat1 in the mouse model of FAP reduced tumor formation, demonstrating that the IFN/STAT pathway is causally associated with the tumor-forming potential of APC-deficient tumors. Mechanistically, STAT1 is downstream target of KRAS and is phosphorylated by its activating mutations. We found that enhanced IFN/STAT signaling in CFAP conferred resistance to MEK inhibitors. These findings reveal the crosstalk between RAS signaling and IFN/STAT signaling, which contributes to the tumor-forming potential and drug response. These results offer a rationale for targeting of IFN/STAT signaling and for the stratification of CRC patients.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Interferones/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Transformación Celular Neoplásica/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Ratones , Modelos Biológicos , Organoides , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Técnicas de Cultivo de Tejidos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Sci Rep ; 8(1): 11401, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061712

RESUMEN

Many attempts have been made to reproduce the three-dimensional (3D) cancer behavior. For that purpose, Matrigel, an extracellular matrix from Engelbreth-Holm-Swarm mouse sarcoma cell, is widely used in 3D cancer models such as scaffold-based spheroids and patient-derived organoids. However, severe ion suppression caused by contaminants from Matrigel hampers large-scale phosphoproteomics. In the present study, we successfully performed global phosphoproteomics from Matrigel-embedded spheroids and organoids. Using acetone precipitations of tryptic peptides, we identified more than 20,000 class 1 phosphosites from HCT116 spheroids. Bioinformatic analysis revealed that phosphoproteomic status are significantly affected by the method used for the recovery from the Matrigel, i.e., Dispase or Cell Recovery Solution. Furthermore, we observed the activation of several phosphosignalings only in spheroids and not in adherent cells which are coincident with previous study using 3D culture. Finally, we demonstrated that our protocol enabled us to identify more than 20,000 and nearly 3,000 class 1 phosphosites from 1.4 mg and 150 µg of patient-derived organoid, respectively. Additionally, we were able to quantify phosphosites with high reproducibility (r = 0.93 to 0.95). Our phosphoproteomics protocol is useful for analyzing the phosphosignalings of 3D cancer behavior and would be applied for precision medicine with patient-derived organoids.


Asunto(s)
Colágeno/farmacología , Laminina/farmacología , Organoides/metabolismo , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteoglicanos/farmacología , Proteómica/métodos , Transducción de Señal , Esferoides Celulares/metabolismo , Acetona , Precipitación Química , Combinación de Medicamentos , Células HCT116 , Humanos , Organoides/efectos de los fármacos , Péptidos/metabolismo , Fenotipo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos
16.
Cell Discov ; 4: 1, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423269

RESUMEN

The mammalian target of rapamycin (mTOR) pathway is commonly activated in human cancers. The activity of mTOR complex 1 (mTORC1) signaling is supported by the intracellular positioning of cellular compartments and vesicle trafficking, regulated by Rab GTPases. Here we showed that tuftelin 1 (TUFT1) was involved in the activation of mTORC1 through modulating the Rab GTPase-regulated process. TUFT1 promoted tumor growth and metastasis. Consistently, the expression of TUFT1 correlated with poor prognosis in lung, breast and gastric cancers. Mechanistically, TUFT1 physically interacted with RABGAP1, thereby modulating intracellular lysosomal positioning and vesicular trafficking, and promoted mTORC1 signaling. In addition, expression of TUFT1 predicted sensitivity to perifosine, an alkylphospholipid that alters the composition of lipid rafts. Perifosine treatment altered the positioning and trafficking of cellular compartments to inhibit mTORC1. Our observations indicate that TUFT1 is a key regulator of the mTORC1 pathway and suggest that it is a promising therapeutic target or a biomarker for tumor progression.

17.
Cancer Sci ; 107(2): 189-202, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26919617

RESUMEN

Non-clinical studies are necessary at each stage of the development of oncology drugs. Many experimental cancer models have been developed to investigate carcinogenesis, cancer progression, metastasis, and other aspects in cancer biology and these models turned out to be useful in the efficacy evaluation and the safety prediction of oncology drugs. While the diversity and the degree of engagement in genetic changes in the initiation of cancer cell growth and progression are widely accepted, it has become increasingly clear that the roles of host cells, tissue microenvironment, and the immune system also play important roles in cancer. Therefore, the methods used to develop oncology drugs should continuously be revised based on the advances in our understanding of cancer. In this review, we extensively summarize the effective use of those models, their advantages and disadvantages, ranges to be evaluated and limitations of the models currently used for the development and for the evaluation of oncology drugs.


Asunto(s)
Modelos Animales de Enfermedad , Descubrimiento de Drogas/métodos , Oncología Médica/métodos , Neoplasias , Animales , Antineoplásicos , Humanos
18.
Cancer Sci ; 106(4): 475-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25898792

RESUMEN

To integrate and discuss the cutting-edge science and revolutionized therapeutics of cancer in Japan and the United States, JCA (Japanese Cancer Association)-AACR (American Association for Cancer Research) Joint Symposia were held on 25th (Symposium 2) and 26th (Symposium 1) in September 2014 as a part of the 73rd Annual Meeting of the Japanese Cancer Association at Pacifico Yokohama in Yokohama, Japan. The symposia focused on mouse genetics and human genomics in cancer research. Eight prominent scientists from JCA and AACR discussed their own research in the symposia. They provided substantial fruitful information not only for identification of novel target molecules and pathways in cancer therapeutics but also for direct translation of cancer genomics into clinics.


Asunto(s)
Neoplasias/genética , Neoplasias/patología , Fosfohidrolasa PTEN/genética , Proteínas Supresoras de Tumor/genética , Animales , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones
19.
Cancer Sci ; 105(10): 1360-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25088905

RESUMEN

Mutant mouse models are indispensable tools for clarifying gene functions and elucidating the pathogenic mechanisms of human diseases. Here, we describe novel cancer models bearing point mutations in the retinoblastoma gene (Rb1) generated by N-ethyl-N-nitrosourea mutagenesis. Two mutations in splice sites reduced Rb1 expression and led to a tumor spectrum and incidence similar to those observed in the conventional Rb1 knockout mice. The missense mutant, Rb1(D326V/+) , developed pituitary tumors, but thyroid tumors were completely suppressed. Immunohistochemical analyses of thyroid tissue revealed that E2F1, but not E2F2/3, was selectively inactivated, indicating that the mutant Rb protein (pRb) suppressed thyroid tumors by inactivating E2F1. Interestingly, Rb1(D326V/+) mice developed pituitary tumors that originated from the intermediate lobe of the pituitary, despite selective inactivation of E2F1. Furthermore, in the anterior lobe of the pituitary, other E2F were also inactivated. These observations show that pRb mediates the inactivation of E2F function and its contribution to tumorigenesis is highly dependent on the cell type. Last, by using a reconstitution assay of synthesized proteins, we showed that the D326V missense pRb bound to E2F1 but failed to interact with E2F2/3. These results reveal the effect of the pRb N-terminal domain on E2F function and the impact of the protein on tumorigenesis. Thus, this mutant mouse model can be used to investigate human Rb family-bearing mutations at the N-terminal region.


Asunto(s)
Factor de Transcripción E2F1/fisiología , Factor de Transcripción E2F2/fisiología , Factor de Transcripción E2F3/fisiología , Mutación , Proteína de Retinoblastoma/genética , Neoplasias de la Tiroides/genética , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Neoplasias de la Tiroides/etiología
20.
Cancer Sci ; 104(7): 937-44, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23551873

RESUMEN

Mutant mouse models are indispensable tools for clarifying the functions of genes and elucidating the underlying pathogenic mechanisms of human diseases. We carried out large-scale mutagenesis using the chemical mutagen N-ethyl-N-nitrosourea. One specific aim of our mutagenesis project was to generate novel cancer models. We screened 7012 animals for dominant traits using a necropsy test and thereby established 17 mutant lines predisposed to cancer. Here, we report on a novel cancer model line that developed osteoma, trichogenic tumor, and breast cancer. Using fine mapping and genomic sequencing, we identified a point mutation in the adenomatous polyposis coli (Apc) gene. The Apc1576 mutants bear a nonsense mutation at codon 1576 in the Apc gene. Although most Apc mutant mice established thus far have multifocal intestinal tumors, mice that are heterozygous for the Apc1576 mutation do not develop intestinal tumors; instead, they develop multifocal breast cancers and trichogenic tumors. Notably, the osteomas that develop in the Apc1576 mutant mice recapitulate the lesion observed in Gardner syndrome, a clinical variant of familial adenomatous polyposis. Our Apc1576 mutant mice will be valuable not only for understanding the function of the Apc gene in detail but also as models of human Gardner syndrome.


Asunto(s)
Modelos Animales de Enfermedad , Etilnitrosourea , Síndrome de Gardner/inducido químicamente , Síndrome de Gardner/genética , Mutágenos , Animales , Codón , Femenino , Genes APC , Genoma , Heterocigoto , Neoplasias Intestinales/inducido químicamente , Neoplasias Intestinales/genética , Masculino , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/genética , Ratones , Mutagénesis , Mutación , Osteoma/inducido químicamente , Osteoma/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...