Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 205, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509465

RESUMEN

BACKGROUND: Gynostemma pentaphyllum, an ancient Chinese herbal medicine, serves as a natural source of gypenosides with significant medicinal properties. Basic helix-loop-helix (bHLH) transcription factors play pivotal roles in numerous biological processes, especially in the regulation of secondary metabolism in plants. However, the characteristics and functions of the bHLH genes in G. pentaphyllum remain unexplored, and their regulatory role in gypenoside biosynthesis remains poorly elucidated. RESULTS: This study identified a total of 111 bHLH members in G. pentaphyllum (GpbHLHs), categorizing them into 26 subgroups based on shared conserved motif compositions and gene structures. Collinearity analysis illustrated that segmental duplications predominately lead to the evolution of GpbHLHs, with most duplicated GpbHLH gene pairs undergoing purifying selection. Among the nine gypenoside-related GpbHLH genes, two GpbHLHs (GpbHLH15 and GpbHLH58) were selected for further investigation based on co-expression analysis and functional prediction. The expression of these two selected GpbHLHs was dramatically induced by methyl jasmonate, and their nuclear localization was confirmed. Furthermore, yeast one-hybrid and dual-luciferase assays demonstrated that GpbHLH15 and GpbHLH58 could bind to the promoters of the gypenoside biosynthesis pathway genes, such as GpFPS1, GpSS1, and GpOSC1, and activate their promoter activity to varying degrees. CONCLUSIONS: In conclusion, our findings provide a detailed analysis of the bHLH family and valuable insights into the potential use of GpbHLHs to enhance the accumulation of gypenosides in G. pentaphyllum.


Asunto(s)
Gynostemma , Extractos Vegetales , Gynostemma/genética , Gynostemma/química , Gynostemma/metabolismo , Extractos Vegetales/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
2.
BMC Plant Biol ; 24(1): 84, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308239

RESUMEN

BACKGROUND: Cinnamomum cassia Presl, classified in the Lauraceae family, is widely used as a spice, but also in medicine, cosmetics, and food. Aroma is an important factor affecting the medicinal and flavoring properties of C. cassia, and is mainly determined by volatile organic compounds (VOCs); however, little is known about the composition of aromatic VOCs in C. cassia and their potential molecular regulatory mechanisms. Here, integrated transcriptomic and volatile metabolomic analyses were employed to provide insights into the formation regularity of aromatic VOCs in C. cassia bark at five different harvesting times. RESULTS: The bark thickness and volatile oil content were significantly increased along with the development of the bark. A total of 724 differentially accumulated volatiles (DAVs) were identified in the bark samples, most of which were terpenoids. Venn analysis of the top 100 VOCs in each period showed that twenty-eight aromatic VOCs were significantly accumulated in different harvesting times. The most abundant VOC, cinnamaldehyde, peaked at 120 months after planting (MAP) and dominated the aroma qualities. Five terpenoids, α-copaene, ß-bourbonene, α-cubebene, α-funebrene, and δ-cadinene, that peaked at 240 MAP could also be important in creating C. cassia's characteristic aroma. A list of 43,412 differentially expressed genes (DEGs) involved in the biosynthetic pathways of aromatic VOCs were identified, including phenylpropanoids, mevalonic acid (MVA) and methylerythritol phosphate (MEP). A gene-metabolite regulatory network for terpenoid and phenylpropanoid metabolism was constructed to show the key candidate structural genes and transcription factors involved in the biosynthesis of terpenoids and phenylpropanoids. CONCLUSIONS: The results of our research revealed the composition and changes of aromatic VOCs in C. cassia bark at different harvesting stages, differentiated the characteristic aroma components of cinnamon, and illuminated the molecular mechanism of aroma formation. These foundational results will provide technical guidance for the quality breeding of C. cassia.


Asunto(s)
Cinnamomum aromaticum , Cinnamomum aromaticum/química , Corteza de la Planta/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Terpenos/análisis
3.
J Exp Bot ; 75(7): 2113-2126, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069635

RESUMEN

The toxicity of aluminum (Al) in acidic soil inhibits plant root development and reduces crop yields. In the plant response to Al toxicity, the initiation of programmed cell death (PCD) appears to be an important mechanism for the elimination of Al-damaged cells to ensure plant survival. In a previous study, the type I metacaspase AhMC1 was found to regulate the Al stress response and to be essential for Al-induced PCD. However, the mechanism by which AhMC1 is altered in the peanut response to Al stress remained unclear. Here, we show that a nuclear protein, mutator-like transposable element 9A (AhMULE9A), directly interacts with AhMC1 in vitro and in vivo. This interaction occurs in the nucleus in peanut and is weakened during Al stress. Furthermore, a conserved C2HC zinc finger domain of AhMULE9A (residues 735-751) was shown to be required for its interaction with AhMC1. Overexpression of AhMULE9A in Arabidopsis and peanut strongly inhibited root growth with a loss of root cell viability under Al treatment. Conversely, knock down of AhMULE9A in peanut significantly reduced Al uptake and Al inhibition of root growth, and alleviated the occurrence of typical hallmarks of Al-induced PCD. These findings provide novel insight into the regulation of Al-induced PCD.


Asunto(s)
Arabidopsis , Arachis , Arachis/genética , Elementos Transponibles de ADN , Aluminio/metabolismo , Incidencia , Raíces de Plantas/metabolismo , Apoptosis
4.
Front Microbiol ; 13: 1063897, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504825

RESUMEN

Endophytic fungi from medicinal plants with specific pharmacological functions attract much attention to provide the possibility of discovering valuable natural drugs with novel structures and biological activities. Nervilia fordii is a rare and endangered karst endemic plant that is used as medicine and food homology in Guangxi, China. These plants have been reported to have antimicrobial, antitumor, antiviral, and anti-inflammatory activities. However, few studies have focused on the diversity and antibacterial activity of endophytic fungi from N. fordii. In the present study, 184 endophytic fungi were isolated from the healthy tissues of N. fordii, and their molecular diversity and antimicrobial activities were analyzed for the first time. These fungi were categorized into 85 different morphotypes based on the morphological characteristics and the similarity between the target sequence and the reference sequence in the GenBank database. With the exception of 18 unidentified fungi, the fungal isolates belonged to at least 2 phyla, 4 classes, 15 orders, 45 known genera, and 45 different species, which showed high abundance, rich diversity, and obvious tissue specificity. All isolates were employed to screen for their antimicrobial activities via the agar diffusion method against Escherichia coli, Staphylococcus aureus, and Candida tropicalis. Among these endophytes, eight strains (9.41%) displayed inhibitory activity against E. coli, 11 strains (12.94%) against S. aureus, and two strains (2.35%) against C. tropicalis, to some extent. In particular, our study showed for the first time that the fungal agar plugs of Penicillium macrosclerotiorum 1151# exhibited promising antibacterial activity against E. coli and S. aureus. Moreover, the ethyl acetate (EA) extract of P. macrosclerotiorum 1151# had antibacterial effects against E. coli and S. aureus with a minimum inhibitory concentration (MIC) of 0.5 mg ml-1. Further research also confirmed that one of the antimicrobial compounds of P. macrosclerotiorum 1151# was methyl chloroacetate and exhibited excellent antibacterial activity against E. coli and S. aureus up to 1.71-fold and 1.13-fold compared with tetracycline (TET) (5 mg ml-1), respectively. Taken together, the present data suggest that various endophytic fungi of N. fordii could be exploited as sources of novel natural antimicrobial agents.

5.
DNA Res ; 28(5)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34499150

RESUMEN

Gynostemma pentaphyllum (Thunb.) Makino is an economically valuable medicinal plant belonging to the Cucurbitaceae family that produces the bioactive compound gypenoside. Despite several transcriptomes having been generated for G. pentaphyllum, a reference genome is still unavailable, which has limited the understanding of the gypenoside biosynthesis and regulatory mechanism. Here, we report a high-quality G. pentaphyllum genome with a total length of 582 Mb comprising 1,232 contigs and a scaffold N50 of 50.78 Mb. The G. pentaphyllum genome comprised 59.14% repetitive sequences and 25,285 protein-coding genes. Comparative genome analysis revealed that G. pentaphyllum was related to Siraitia grosvenorii, with an estimated divergence time dating to the Paleogene (∼48 million years ago). By combining transcriptome data from seven tissues, we reconstructed the gypenoside biosynthetic pathway and potential regulatory network using tissue-specific gene co-expression network analysis. Four UDP-glucuronosyltransferases (UGTs), belonging to the UGT85 subfamily and forming a gene cluster, were involved in catalyzing glycosylation in leaf-specific gypenoside biosynthesis. Furthermore, candidate biosynthetic genes and transcription factors involved in the gypenoside regulatory network were identified. The genetic information obtained in this study provides insights into gypenoside biosynthesis and lays the foundation for further exploration of the gypenoside regulatory mechanism.


Asunto(s)
Gynostemma , Plantas Medicinales , Cromosomas , Gynostemma/genética , Extractos Vegetales
6.
Int J Genomics ; 2021: 9939403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136563

RESUMEN

The R2R3-MYB family is one of the largest plant transcription factor (TF) families playing vital roles in defense, plant growth, and secondary metabolism biosynthesis. Although this gene family has been studied in many species, isoflavonoid biosynthesis-related R2R3-MYB TFs in Callerya speciosa (Champ. ex Benth.) Schot, a traditional Chinese medicinal herb, are poorly understood. Here, a total of 101 R2R3-MYB TFs were identified from C. speciosa transcriptome dataset. 25 clades divided into five functional groups were clustered based on the sequence similarity and phylogenetic tree. Conserved motifs and domain distribution, expression patterns, and coexpression networks were also employed to identify the potential R2R3-MYB TFs in the regulation of isoflavonoid biosynthesis. In silico evaluation showed that the deduced R2R3-CsMYB proteins contain highly conserved R2R3 repeat domain at the N-terminal region, that is the signature motif of R2R3-type MYB TFs. Eight potential TFs (CsMYB17, CsMYB36, CsMYB41, CsMYB44, CsMYB45, CsMYB46, CsMYB72, and CsMYB81) had high degrees of coexpression with four key isoflavonoid biosynthetic genes (CsIFS, CsCHS7, CsHID-1, and CsCHI3), in which CsMYB36 as a potential regulator possessed the highest degree. HPLC analysis showed that formononetin and maackiain contents were significantly increased during the development of tuberous roots, which might be controlled by both related R2R3-CsMYBs and structural genes involved in the isoflavonoid biosynthesis pathway. The transcriptome data were further validated by reverse transcription real-time PCR (RT-qPCR) analysis, and similar expression profiles between TFs and key structural genes were identified. This study was the first step toward the understanding of the R2R3-MYB TFs regulating isoflavonoid biosynthesis in C. speciosa. The results will provide information for further functional analysis and quality improvement through genetic manipulation of these potential R2R3-CsMYB genes in C. speciosa.

7.
Plant Sci ; 308: 110931, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34034861

RESUMEN

Nitric oxide-mediated S-nitrosation through S-nitrosoglutathione reductase (GSNOR) plays important roles in cellular processes and signaling of plants; however, the regulatory mechanism of programmed cell death (PCD) by S-nitrosation remains unclear. In this study, the S-nitrosated proteomic and functions of GSNOR during Al-induced PCD in peanut were investigated. Al stress induced an increase of S-nitrosothiol (SNO) content and GSNOR activity in Al-induced PCD. There was significant positive correlation between SNO content and hydrogen peroxide content. The S-nitrosated proteomic analysis identified 402 S-nitrosated proteins containing 551 S-nitrosated sites during Al-induced PCD in the root tips of peanut. These S-nitrosated proteins were involved in regulation of various biological processes including energy metabolism, maintenance of cell wall function and organic acid secretion. Among them, 128 S-nitrosated proteins were up-regulated and one was down-regulated after Al stress. Experiments with recombinant AhGSNOR revealed that activity of the enzyme was inhibited by its S-nitrosation, with a moderate decrease of 17.9 % after 100 µM GSNO incubation. These data provide novel insights to understanding the functional mechanism of NO-mediated S-nitrosation during plant PCD.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Aluminio/toxicidad , Arachis/fisiología , Meristema/fisiología , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Apoptosis/efectos de los fármacos , Arachis/enzimología , Arachis/genética , Nitrosación , Raíces de Plantas/fisiología , Proteómica
8.
Sci Rep ; 11(1): 9, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420059

RESUMEN

Callerya speciosa (Champ. ex Benth.) Schot is a traditional Chinese medicine characterized by tuberous roots as the main organ of isoflavonoid accumulation. Root thickening and isoflavonoid accumulation are two major factors for yield and quality of C. speciosa. However, the underlying mechanisms of root thickening and isoflavonoid biosynthesis have not yet been elucidated. Here, integrated morphological, hormonal and transcriptomic analyses of C. speciosa tuberous roots at four different ages (6, 12, 18, 30 months after germination) were performed. The growth cycle of C. speciosa could be divided into three stages: initiation, rapid-thickening and stable-thickening stage, which cued by the activity of vascular cambia. Endogenous changes in phytohormones were associated with developmental changes during root thickening. Jasmonic acid might be linked to the initial development of tuberous roots. Abscisic acid seemed to be essential for tuber maturation, whereas IAA, cis-zeatin and gibberellin 3 were considered essential for rapid thickening of tuberous roots. A total of 4337 differentially expressed genes (DEGs) were identified during root thickening, including 15 DEGs participated in isoflavonoid biosynthesis, and 153 DEGs involved in starch/sucrose metabolism, hormonal signaling, transcriptional regulation and cell wall metabolism. A hypothetical model of genetic regulation associated with root thickening and isoflavonoid biosynthesis in C. speciosa is proposed, which will help in understanding the underlying mechanisms of tuberous root formation and isoflavonoid biosynthesis.


Asunto(s)
Fabaceae/genética , Fabaceae/metabolismo , Isoflavonas/biosíntesis , Señalización del Calcio , Fabaceae/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Sistema de Señalización de MAP Quinasas , Medicina Tradicional China , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Front Plant Sci ; 12: 796248, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069652

RESUMEN

The R2R3-MYB gene family participates in several plant physiological processes, especially the regulation of the biosynthesis of secondary metabolites. However, little is known about the functions of R2R3-MYB genes in Gynostemma pentaphyllum (G. pentaphyllum), a traditional Chinese medicinal herb that is an excellent source of gypenosides (a class of triterpenoid saponins) and flavonoids. In this study, a systematic genome-wide analysis of the R2R3-MYB gene family was performed using the recently sequenced G. pentaphyllum genome. In total, 87 R2R3-GpMYB genes were identified and subsequently divided into 32 subgroups based on phylogenetic analysis. The analysis was based on conserved exon-intron structures and motif compositions within the same subgroup. Collinearity analysis demonstrated that segmental duplication events were majorly responsible for the expansion of the R2R3-GpMYB gene family, and Ka/Ks analysis indicated that the majority of the duplicated R2R3-GpMYB genes underwent purifying selection. A combination of transcriptome analysis and quantitative reverse transcriptase-PCR (qRT-PCR) confirmed that Gynostemma pentaphyllum myeloblastosis 81 (GpMYB81) along with genes encoding gypenoside and flavonol biosynthetic enzymes exhibited similar expression patterns in different tissues and responses to methyl jasmonate (MeJA). Moreover, GpMYB81 could bind to the promoters of Gynostemma pentaphyllum farnesyl pyrophosphate synthase 1 (GpFPS1) and Gynostemma pentaphyllum chalcone synthase (GpCHS), the key structural genes of gypenoside and flavonol biosynthesis, respectively, and activate their expression. Altogether, this study highlights a novel transcriptional regulatory mechanism that suggests that GpMYB81 acts as a "dual-function" regulator of gypenoside and flavonol biosynthesis in G. pentaphyllum.

10.
Molecules ; 25(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32824884

RESUMEN

The use of antagonistic microorganisms and their volatile organic compounds (VOCs) to control plant fungal pathogens is an eco-friendly and promising substitute for chemical fungicides. In this work, endophytic bacterium ETR-B22, isolated from the root of Sophora tonkinensis Gagnep., was found to exhibit strong antagonistic activity against 12 fungal pathogens found in agriculture. Strain ETR-B22 was identified as Burkholderia cenocepacia based on 16S rRNA and recA sequences. We evaluated the antifungal activity of VOCs emitted by ETR-B22. The VOCs from strain ETR-B22 also showed broad-spectrum antifungal activity against 12 fungal pathogens. The composition of the volatile profiles was analyzed based on headspace solid phase microextraction (HS-SPME) gas chromatography coupled to mass spectrometry (GC-MS). Different extraction strategies for the SPME process significantly affected the extraction efficiency of the VOCs. Thirty-two different VOCs were identified. Among the VOC of ETR-B22, dimethyl trisulfide, indole, methyl anthranilate, methyl salicylate, methyl benzoate, benzyl propionate, benzyl acetate, 3,5-di-tert-butylphenol, allyl benzyl ether and nonanoic acid showed broad-spectrum antifungal activity, and are key inhibitory compounds produced by strain ETR-B22 against various fungal pathogens. Our results suggest that the endophytic strain ETR-B22 and its VOCs have high potential for use as biological controls of plant fungal pathogens.


Asunto(s)
Antifúngicos/farmacología , Burkholderia cenocepacia/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas/métodos , Raíces de Plantas/microbiología , Microextracción en Fase Sólida/métodos , Sophora/microbiología , Compuestos Orgánicos Volátiles/farmacología , Antifúngicos/análisis , Antifúngicos/aislamiento & purificación , Burkholderia cenocepacia/crecimiento & desarrollo , ARN Ribosómico 16S/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/aislamiento & purificación
11.
Plant Physiol Biochem ; 154: 238-247, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32563852

RESUMEN

Gynostemma pentaphyllum is a traditional Chinese medicinal herb, serving as natural source of gypenosides (triterpene saponins). The APETALA2/ethylene response factor (AP2/ERF) transcription factors, playing essential regulation roles in plant biotic and abiotic stress responses and secondary metabolism biosynthesis. However, the regulation roles of AP2/ERF transcription factors in gypenosides biosynthesis in G. pentaphyllum remains little understood. In the present study, 125 AP2/ERF genes were identified from G. pentaphyllum transcriptome datasets. Phylogenetic, conserved motifs and expression pattern were employed to comprehensively analyze the 125 GpAP2/ERF genes. Based on the sequence similarity and phylogeny tree, the 125 GpAP2/ERF genes can be classified into 10 groups. Moreover, the distribution of conserved motifs among GpAP2/ERF proteins in phylogenetic trees was consistent with previous studies, thus supporting the classification. Expression profiling indicated that the 125 GpAP2/ERF genes exhibited distinct tissue-specific expression patterns. As confirmed by qRT-PCR, the four candidate GpAP2/ERF genes and gypenoside biosynthetic genes were highly expressed in leaves and/or flowers, and show similar expression patterns in response to MeJA. Base on the expression patterns and phylogenetic relationships, two GpAP2/ERF genes were considered as potential regulatory genes for gypenoside biosynthesis. Our study enhances understanding roles of GpAP2/ERF genes in regulation of gypenosides biosynthesis.


Asunto(s)
Gynostemma , Proteínas de Plantas/genética , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas , Gynostemma/genética , Familia de Multigenes , Filogenia , Extractos Vegetales/biosíntesis , Proteínas de Plantas/metabolismo , Transcriptoma
12.
Front Physiol ; 8: 1037, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311970

RESUMEN

It has been reported that nitric oxide (NO) is a negative regulator of aluminum (Al)-induced programmed cell death (PCD) in peanut root tips. However, the inhibiting mechanism of NO on Al-induced PCD is unclear. In order to investigate the mechanism by which NO inhibits Al-induced PCD, the effects of co-treatment Al with the exogenous NO donor or the NO-specific scavenger on peanut root tips, the physiological properties of antioxidants systems and cell wall (CW) in root tip cells of NO inhibiting Al-induced PCD were studied with two peanut cultivars. The results showed that Al exposure induced endogenous NO accumulation, and endogenous NO burst increased antioxidant enzyme activity in response to Al stress. The addition of NO donor sodium nitroprusside (SNP) relieved Al-induced root elongation inhibition, cell death and Al adsorption in CW, as well as oxidative damage and ROS accumulation. Furthermore, co-treatment with the exogenous NO donor decreased MDA content, LOX activity and pectin methylesterase (PME) activity, increased xyloglucan endotransglucosylase (XET) activity and relative expression of the xyloglucan endotransglucosylase/hydrolase (XTH-32) gene. Taken together, exogenous NO alleviated Al-induced PCD by inhibiting Al adsorption in CW, enhancing antioxidant defense and reducing peroxidation of membrane lipids, alleviating the inhibition of Al on root elongation by maintaining the extensibility of CW, decreasing PME activity, and increasing XET activity and relative XTH-32 expression of CW.

13.
Plant Physiol Biochem ; 82: 76-84, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24907527

RESUMEN

Recent studies had certified that aluminum (Al) induced ROS production and programmed cell death (PCD) in higher plants. The relationship between ROS production and PCD occurrence under Al stress is uncovered. The results showed that root elongation inhibition and PCD occurrence was induced by 100 µM AlCl3. Al stress induced ROS burst, up-regulated Rboh and COX gene expression, increased mitochondrial permeability transition pore (MPTP) opening, decreased inner mitochondrial membrane potential (ΔΨm), released cytochrome c from mitochondria to cytoplasm, activated caspase 3-like protease activity. Exogenous H2O2 aggravated the changes caused by Al and accelerated PCD occurrence, but ROS scavenger CAT and AsA reversed the changes caused by Al and inhibited PCD production. A potential cascade of cellular events during Al induced PCD via mitochondria dependent pathway and the mechanism of ROS on regulating PCD induced by Al is proposed.


Asunto(s)
Aluminio/farmacología , Apoptosis/efectos de los fármacos , Arachis/efectos de los fármacos , Arachis/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arachis/citología , Peróxido de Hidrógeno/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...