Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACS Au ; 4(2): 837-846, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425926

RESUMEN

Fully understanding the mechanism of allosteric regulation in biomolecules requires separating and examining all of the involved factors. In enzyme catalysis, allosteric effector binding shifts the structure and dynamics of the active site, leading to modified energetic (e.g., energy barrier) and dynamical (e.g., diffusion coefficient) factors underlying the catalyzed reaction rate. Such modifications can be subtle and dependent on the type of allosteric effector, representing a fine-tuning of protein function. The microscopic description of allosteric regulation at the level of function-dictating factors has prospective applications in fundamental and pharmaceutical sciences, which is, however, largely missing so far. Here, we characterize the allosteric fine-tuning of enzyme catalysis, using human Pin1 as an example, by performing more than half-millisecond all-atom molecular dynamics simulations. Changes of reaction kinetics and the dictating factors, including the free energy surface along the reaction coordinate and the diffusion coefficient of the reaction dynamics, under various enzyme and allosteric effector binding conditions are examined. Our results suggest equal importance of the energetic and dynamical factors, both of which can be modulated allosterically, and the combined effect determines the final allosteric output. We also reveal the potential dynamic basis for allosteric modulation using an advanced statistical technique to detect function-related conformational dynamics. Methods developed in this work can be applied to other allosteric systems.

2.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37502840

RESUMEN

Atypical chemokine receptor 3 (ACKR3, also known as CXCR7) is a scavenger receptor that regulates extracellular levels of the chemokine CXCL12 to maintain responsiveness of its partner, the G protein-coupled receptor (GPCR), CXCR4. ACKR3 is notable because it does not couple to G proteins and instead is completely biased towards arrestins. Our previous studies revealed that GRK2 and GRK5 install distinct distributions of phosphates (or "barcodes") on the ACKR3 carboxy terminal tail, but how these unique barcodes drive different cellular outcomes is not understood. It is also not known if arrestin2 (Arr2) and 3 (Arr3) bind to these barcodes in distinct ways. Here we report cryo-electron microscopy structures of Arr2 and Arr3 in complex with ACKR3 phosphorylated by either GRK2 or GRK5. Unexpectedly, the finger loops of Arr2 and 3 directly insert into the detergent/membrane instead of the transmembrane core of ACKR3, in contrast to previously reported "core" GPCR-arrestin complexes. The distance between the phosphorylation barcode and the receptor transmembrane core regulates the interaction mode of arrestin, alternating between a tighter complex for GRK5 sites and heterogenous primarily "tail only" complexes for GRK2 sites. Arr2 and 3 bind at different angles relative to the core of ACKR3, likely due to differences in membrane/micelle anchoring at their C-edge loops. Our structural investigations were facilitated by Fab7, a novel Fab that binds both Arr2 and 3 in their activated states irrespective of receptor or phosphorylation status, rendering it a potentially useful tool to aid structure determination of any native GPCR-arrestin complex. The structures provide unprecedented insight into how different phosphorylation barcodes and arrestin isoforms can globally affect the configuration of receptor-arrestin complexes. These differences may promote unique downstream intracellular interactions and cellular responses. Our structures also suggest that the 100% bias of ACKR3 for arrestins is driven by the ability of arrestins, but not G proteins, to bind GRK-phosphorylated ACKR3 even when excluded from the receptor cytoplasmic binding pocket.

3.
J Chem Inf Model ; 63(12): 3892-3902, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37285207

RESUMEN

Drug resistance in antiviral treatments is a serious public health problem. Viral proteins mutate very fast, giving them a way to escape drugs by lowering drug binding affinity but with compromised function. Human immunodeficiency virus type I (HIV-1) protease, a critical antiretroviral therapeutic target, represents a model for such viral regulation under inhibition. Drug inhibitors of HIV-1 protease lose effectiveness as the protein evolves through several variants to become more resistant. However, the detailed mechanism of drug resistance in HIV-1 protease is still unclear. Here, we test the hypothesis that mutations throughout the protease alter the protein conformational ensemble to weaken protein-inhibitor binding, resulting in an inefficient protease but still viable virus. Comparing conformational ensembles between variants and the wild type helps detect these function-related dynamical changes. All analyses of over 30 µs simulations converge to the conclusion that conformational dynamics of more drug-resistant variants are more different from that of the wild type. Distinct roles of mutations during viral evolution are discussed, including a mutation predominantly contributing to the increase of drug resistance and a mutation that is responsible (synergistically) for restoring catalytic efficiency. Drug resistance is mainly due to altered flap dynamics that hinder the access to the active site. The mutant variant showing the highest drug resistance has the most ″collapsed″ active-site pocket and hence the largest magnitude of hindrance of drug binding. An enhanced difference contact network community analysis is applied to understand allosteric communications. The method summarizes multiple conformational ensembles in one community network and can be used in future studies to detect function-related dynamics in proteins.


Asunto(s)
Inhibidores de la Proteasa del VIH , Humanos , Inhibidores de la Proteasa del VIH/química , Sitios de Unión , Farmacorresistencia Viral/genética , Dominio Catalítico , Mutación , Proteasa del VIH/metabolismo
4.
J Phys Chem B ; 127(14): 3139-3150, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36989346

RESUMEN

Cyclophilins are ubiquitous human enzymes that catalyze peptidyl-prolyl cis-trans isomerization in protein substrates. Of the 17 unique isoforms, five closely related isoforms (CypA-E) are found in various environments and participate in diverse cellular processes, yet all have similar structures and the same core catalytic function. The question is what key residues are behind the conserved function of these enzymes. Here, conformational dynamics are compared across these isoforms to detect conserved dynamics essential for the catalytic activity of cyclophilins. A set of key dynamic residues, defined by the most dynamically conserved positions, are identified in the gatekeeper 2 region. The highly conserved glycine (Gly80) in this region is predicted to underlie the local flexibility, which is further tested by molecular dynamics simulations performed on mutants (G80A) of CypE and CypA. The mutation leads to decreased flexibility of CypE and CypA during substrate binding but increased flexibility during catalysis. Dynamical changes occur in the mutated region and a distal loop downstream of the mutation site in sequence. Examinations of the mutational effect on catalysis show that both mutated CypE and CypA exhibit shifted binding free energies of the substrate under distinct isomer conformations. The results suggest a loss of function in the mutated CypE and CypA. These catalytic changes by the mutation are likely independent of the substrate sequence, at least in CypA. Our work presents a method to identify function-related key residues in proteins.


Asunto(s)
Ciclofilinas , Proteínas , Humanos , Conformación Proteica , Simulación de Dinámica Molecular , Catálisis
5.
Biochemistry ; 62(5): 1070-1081, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36795942

RESUMEN

Numerous studies demonstrate that enzymes undergo multiple conformational changes during catalysis. The malleability of enzymes forms the basis for allosteric regulation: residues located far from the active site can exert long-range dynamical effects on the active site residues to modulate catalysis. The structure of Pseudomonas aeruginosa d-arginine dehydrogenase (PaDADH) shows four loops (L1, L2, L3, and L4) that span the substrate and the FAD-binding domains. Loop L4 comprises residues 329-336, spanning over the flavin cofactor. The I335 residue on loop L4 is ∼10 Šaway from the active site and ∼3.8 Šfrom N(1)-C(2)═O atoms of the flavin. In this study, we used molecular dynamics and biochemical techniques to investigate the effect of the mutation of I335 to histidine on the catalytic function of PaDADH. Molecular dynamics showed that the conformational dynamics of PaDADH are shifted to a more closed conformation in the I335H variant. In agreement with an enzyme that samples more in a closed conformation, the kinetic data of the I335H variant showed a 40-fold decrease in the rate constant of substrate association (k1), a 340-fold reduction in the rate constant of substrate dissociation from the enzyme-substrate complex (k2), and a 24-fold decrease in the rate constant of product release (k5), compared to that of the wild-type. Surprisingly, the kinetic data are consistent with the mutation having a negligible effect on the reactivity of the flavin. Altogether, the data indicate that the residue at position 335 has a long-range dynamical effect on the catalytic function in PaDADH.


Asunto(s)
Aminoácido Oxidorreductasas , Simulación de Dinámica Molecular , Aminoácido Oxidorreductasas/química , Dominio Catalítico , Catálisis , Flavinas/metabolismo , Cinética , Especificidad por Sustrato , Sitios de Unión , Conformación Proteica
6.
J Phys Chem B ; 126(51): 10844-10853, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36529932

RESUMEN

Mitochondria are the powerhouse of a cell, whose disruption due to mitochondrial pore opening can cause cell death, leading to necrosis and many other diseases. The peptidyl-prolyl cis-trans isomerase cyclophilin D (CypD) is a key player in the regulation of the mitochondrial pore. The activity of CypD can be modulated by the post-translational modification (PTM). However, the detailed mechanism of this functional modulation is not well understood. Here, we investigate the catalytic mechanism of unmodified and modified CypD by calculating the reaction free energy profiles and characterizing the function-related conformational dynamics using molecular dynamics simulations and associated analyses. Our results show that unmodified and modified CypD considerably lower the isomerization free energy barrier compared to a free peptide substrate, supporting the catalytic activity of CypD in the simulation systems. The unmodified CypD reduces the free energy difference between the cis and trans states of the peptide substrate, suggesting a stronger binding affinity of CypD toward cis, consistent with experiments. In contrast, phosphorylated CypD further stabilizes trans, leading to a lower catalytic rate in the trans-to-cis direction. The differential catalytic activities of the unmodified and phosphorylated CypD are due to a significant shift of the conformational ensemble upon phosphorylation under different functional states. Interestingly, the local flexibility is both reduced and enhanced at distinct regions by phosphorylation, which is explained by a "seesaw" model of flexibility modulation. The allosteric pathway between the phosphorylation site and a distal site displaying substantial conformational changes upon phosphorylation is also identified, which is influenced by the presence of the substrate or the substrate conformation. Similar conclusions are obtained for the acetylation of CypD using the same peptide substrate and the influence of substrate sequence is also examined. Our work may serve as the basis for the understanding of other PTMs and PTM-initiated allosteric regulations in CypD.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Peptidil-Prolil Isomerasa F/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Mitocondrias , Simulación de Dinámica Molecular , Procesamiento Proteico-Postraduccional
7.
J Phys Chem B ; 126(14): 2612-2620, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35319195

RESUMEN

Initiation of biological processes involving protein-ligand binding, transient protein-protein interactions, or amino acid modifications alters the conformational dynamics of proteins. Accompanying these biological processes are ensuing coupled atomic level conformational changes within the proteins. These conformational changes collectively connect multiple amino acid residues at distal allosteric, binding, and/or active sites. Local changes due to, for example, binding of a regulatory ligand at an allosteric site initiate the allosteric regulation. The allosteric signal propagates throughout the protein structure, causing changes at distal sites, activating, deactivating, or modifying the function of the protein. Hence, dynamical responses within protein structures to stimuli contain critical information on protein function. In this Perspective, we examine the description of allosteric regulation from protein dynamical responses and associated alternative and emerging computational approaches to map allosteric communication pathways between distal sites in proteins at the atomic level.


Asunto(s)
Aminoácidos , Proteínas , Regulación Alostérica , Sitios de Unión , Comunicación , Ligandos , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas/química
8.
J Chem Theory Comput ; 18(2): 1173-1187, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35048691

RESUMEN

Allosteric regulation plays a central role in orchestrating diverse cellular processes. A prerequisite for allostery is a flexible biomolecule within which two distal sites can communicate via concerted or sequential conformational changes. We introduce a computational method to elucidate allosteric communication pathways, comprising critical allosteric residues, in biomolecules by taking advantage of conformational changes during a functional process. Conformational changes are modeled explicitly since they modulate the network of residue-residue interactions, which could propagate allosteric signals between two or more distal sites. The method implements the suboptimal path analysis in the framework of the difference contact network analysis or dCNA. The method identifies key experimentally verified allosteric residues in imidazole glycerol phosphate synthase (IGPS), a well-studied allosteric protein system. By contrast, some of the most important allosteric residues are not captured using methods that do not consider conformational changes, such as those that solely rely on examining the individual bound or unbound state of the protein. Using the dCNA path analysis along with conventional analyses, we gain several new biological insights into IGPS. Interestingly, different binding processes in the thermodynamic cycle generally use a similar group of residues in defining the allosteric communication pathways, with some residues being more specific to a certain binding process. We also observed that the fine-tuning of allosteric coupling depends on the strength of effector binding. Our results are robust against small variations of parameters and details of the network construction. The dCNA path analysis method is general and can be easily applied to diverse allosteric systems.

9.
Angew Chem Int Ed Engl ; 60(43): 23289-23298, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34436811

RESUMEN

Multi-scale calcium (Ca2+ ) dynamics, exhibiting wide-ranging temporal kinetics, constitutes a ubiquitous mode of signal transduction. We report a novel endoplasmic-reticulum (ER)-targeted Ca2+ indicator, R-CatchER, which showed superior kinetics in vitro (koff ≥2×103  s-1 , kon ≥7×106  M-1 s-1 ) and in multiple cell types. R-CatchER captured spatiotemporal ER Ca2+ dynamics in neurons and hotspots at dendritic branchpoints, enabled the first report of ER Ca2+ oscillations mediated by calcium sensing receptors (CaSRs), and revealed ER Ca2+ -based functional cooperativity of CaSR. We elucidate the mechanism of R-CatchER and propose a principle to rationally design genetically encoded Ca2+ indicators with a single Ca2+ -binding site and fast kinetics by tuning rapid fluorescent-protein dynamics and the electrostatic potential around the chromophore. The design principle is supported by the development of G-CatchER2, an upgrade of our previous (G-)CatchER with improved dynamic range. Our work may facilitate protein design, visualizing Ca2+ dynamics, and drug discovery.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/análisis , Retículo Endoplásmico/metabolismo , Proteínas Luminiscentes/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Proteínas de Unión al Calcio/química , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/química , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Ingeniería de Proteínas , Espectrometría de Fluorescencia
10.
Nature ; 595(7868): 600-605, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262173

RESUMEN

G-protein-coupled receptor (GPCR) kinases (GRKs) selectively phosphorylate activated GPCRs, thereby priming them for desensitization1. Although it is unclear how GRKs recognize these receptors2-4, a conserved region at the GRK N terminus is essential for this process5-8. Here we report a series of cryo-electron microscopy single-particle reconstructions of light-activated rhodopsin (Rho*) bound to rhodopsin kinase (GRK1), wherein the N terminus of GRK1 forms a helix that docks into the open cytoplasmic cleft of Rho*. The helix also packs against the GRK1 kinase domain and stabilizes it in an active configuration. The complex is further stabilized by electrostatic interactions between basic residues that are conserved in most GPCRs and acidic residues that are conserved in GRKs. We did not observe any density for the regulator of G-protein signalling homology domain of GRK1 or the C terminus of rhodopsin. Crosslinking with mass spectrometry analysis confirmed these results and revealed dynamic behaviour in receptor-bound GRK1 that would allow the phosphorylation of multiple sites in the receptor tail. We have identified GRK1 residues whose mutation augments kinase activity and crosslinking with Rho*, as well as residues that are involved in activation by acidic phospholipids. From these data, we present a general model for how a small family of protein kinases can recognize and be activated by hundreds of different GPCRs.


Asunto(s)
Quinasa 1 del Receptor Acoplado a Proteína-G/química , Rodopsina/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bovinos , Microscopía por Crioelectrón , Estructura Terciaria de Proteína , Transducción de Señal
11.
Biochemistry ; 60(8): 597-606, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33591178

RESUMEN

The multifunctional protein p53 is the central molecular sensor of cellular stresses. The canonical function of p53 is to transcriptionally activate target genes in response to, for example, DNA damage that may trigger apoptosis. Recently, p53 was also found to play a role in the regulation of necrosis, another type of cell death featured by the mitochondrial permeability transition (mPT). In this process, p53 directly interacts with the mPT regulator cyclophilin D, the detailed mechanism of which however remains poorly understood. Here, we report a comprehensive computational investigation of the p53-cyclophilin D interaction using molecular dynamics simulations and associated analyses. We have identified the specific cyclophilin D binding site on p53 that is located at proline 151 in the DNA binding domain. As a peptidyl-prolyl isomerase, cyclophilin D binds p53 and catalyzes the cis-trans isomerization of the peptide bond preceding proline 151. We have also characterized the effect of such an isomerization and found that the p53 domain in the cis state is overall more rigid than the trans state except for the local region around proline 151. Dynamical changes upon isomerization occur in both local and distal regions, indicating an allosteric effect elicited by the isomerization. We present potential allosteric communication pathways between proline 151 and distal sites, including the DNA binding surface. Our work provides, for the first time, a model for how cyclophilin D binds p53 and regulates its activity by switching the configuration of a specific site.


Asunto(s)
Ciclofilinas/metabolismo , ADN/metabolismo , Simulación de Dinámica Molecular , Prolina/química , Proteína p53 Supresora de Tumor/metabolismo , Sitios de Unión , Catálisis , Ciclofilinas/química , Ciclofilinas/genética , ADN/química , Humanos , Prolina/metabolismo , Dominios Proteicos , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
12.
Protein Sci ; 30(1): 20-30, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32734663

RESUMEN

Bio3D is a family of R packages for the analysis of biomolecular sequence, structure, and dynamics. Major functionality includes biomolecular database searching and retrieval, sequence and structure conservation analysis, ensemble normal mode analysis, protein structure and correlation network analysis, principal component, and related multivariate analysis methods. Here, we review recent package developments, including a new underlying segregation into separate packages for distinct analysis, and introduce a new method for structure analysis named ensemble difference distance matrix analysis (eDDM). The eDDM approach calculates and compares atomic distance matrices across large sets of homologous atomic structures to help identify the residue wise determinants underlying specific functional processes. An eDDM workflow is detailed along with an example application to a large protein family. As a new member of the Bio3D family, the Bio3D-eddm package supports both experimental and theoretical simulation-generated structures, is integrated with other methods for dissecting sequence-structure-function relationships, and can be used in a highly automated and reproducible manner. Bio3D is distributed as an integrated set of platform independent open source R packages available from: http://thegrantlab.org/bio3d/.


Asunto(s)
Biología Computacional , Bases de Datos de Proteínas , Simulación de Dinámica Molecular , Proteínas/química , Programas Informáticos , Conformación Proteica
13.
Methods Mol Biol ; 2112: 15-28, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32006275

RESUMEN

Bio3D-web is an online application for the interactive analysis of sequence-structure-dynamics relationships in user-defined protein structure sets. Major functionality includes structure database searching, sequence and structure conservation assessment, inter-conformer relationship mapping and clustering with principal component analysis (PCA), and flexibility prediction and comparison with ensemble normal mode analysis (eNMA). Collectively these methods allow users to start with a single sequence or structure and characterize the structural, conformational, and internal dynamic properties of homologous proteins for which there are high-resolution structures available. Functionality is also provided for the generation of custom PDF, Word, and HTML analysis reports detailing all user-specified analysis settings and corresponding results. Bio3D-web is available at http://thegrantlab.org/bio3d/webapps , as a Docker image https://hub.docker.com/r/bio3d/bio3d-web/ , or downloadable source code https://bitbucket.org/Grantlab/bio3d-web .


Asunto(s)
Conformación Proteica , Proteínas/química , Alineación de Secuencia , Interpretación Estadística de Datos , Bases de Datos Factuales , Programas Informáticos
14.
Acc Chem Res ; 52(12): 3455-3464, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31793290

RESUMEN

Recent advances have made all-atom molecular dynamics (MD) a powerful tool to sample the conformational energy landscape. There are still however three major challenges in the application of MD to biological systems: accuracy of force field, time scale, and the analysis of simulation trajectories. Significant progress in addressing the first two challenges has been made and extensively reviewed previously. This Account focuses on strategies of analyzing simulation data of biomolecules that also covers ways to properly design simulations and validate simulation results. In particular, we examine an approach named comparative perturbed-ensembles analysis, which we developed to efficiently detect dynamics in protein MD simulations that can be linked to biological functions. In our recent studies, we implemented this approach to understand allosteric regulations in several disease-associated human proteins. The central task of a comparative perturbed-ensembles analysis is to compare two or more conformational ensembles of a system generated by MD simulations under distinct perturbation conditions. Perturbations can be different sequence variations, ligand-binding conditions, and other physical/chemical modifications of the system. Each simulation is long enough (e.g., microsecond-long) to ensure sufficient sampling of the local substate. Then, sophisticated bioinformatic and statistical tools are applied to extract function-related information from the simulation data, including principal component analysis, residue-residue contact analysis, difference contact network analysis (dCNA) based on the graph theory, and statistical analysis of side-chain conformations. Computational findings are further validated with experimental data. By comparing distinct conformational ensembles, functional micro- to millisecond dynamics can be inferred. In contrast, such a time scale is difficult to reach in a single simulation; even when reached for a single condition of a system, it is elusive as to what dynamical motions are related to functions without, for example, comparing free and substrate-bound proteins at the minimum. We illustrate our approach with three examples. First, we discuss using the approach to identify allosteric pathways in cyclophilin A (CypA), a member of a ubiquitous class of peptidyl-prolyl cis-trans isomerase enzymes. By comparing side-chain torsion-angle distributions of CypA in wild-type and mutant forms, we identified three pathways: two are consistent with recent nuclear magnetic resonance experiments, whereas the third is a novel pathway. Second, we show how the approach enables a dynamical-evolution analysis of the human cyclophilin family. In the analysis, both conserved and divergent conformational dynamics across three cyclophilin isoforms (CypA, CypD, and CypE) were summarized. The conserved dynamics led to the discovery of allosteric networks resembling those found in CypA. A residue wise determinant underlying the unique dynamics in CypD was also detected and validated with additional mutational MD simulations. In the third example, we applied the approach to elucidate a peptide sequence-dependent allosteric mechanism in human Pin 1, a phosphorylation-dependent peptidyl-prolyl isomerase. We finally present our outlook of future directions. Especially, we envisage how the approach could help open a new avenue in drug discovery.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Humanos , Simulación de Dinámica Molecular , Dominios Proteicos
15.
J Biol Chem ; 294(48): 18451-18464, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31645439

RESUMEN

Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) and a central component of the NO-cGMP pathway, critical to cardiovascular function. NO binding to the N-terminal sensor domain in sGC enhances the cyclase activity of the C-terminal catalytic domain. Our understanding of the structural elements regulating this signaling cascade is limited, hindering structure-based drug design efforts that target sGC to improve the management of cardiovascular diseases. Conformational changes are thought to propagate the NO-binding signal throughout the entire sGC heterodimer, via its coiled-coil domain, to reorient the catalytic domain into an active conformation. To identify the structural elements involved in this signal transduction cascade, here we optimized a cGMP-based luciferase assay that reports on heterologous sGC activity in Escherichia coli and identified several mutations that activate sGC. These mutations resided in the dorsal flaps, dimer interface, and GTP-binding regions of the catalytic domain. Combinations of mutations from these different elements synergized, resulting in even greater activity and indicating a complex cross-talk among these regions. Molecular dynamics simulations further revealed conformational changes underlying the functional impact of these mutations. We propose that the interfacial residues play a central role in the sGC activation mechanism by coupling the coiled-coil domain to the active site via a series of hot spots. Our results provide new mechanistic insights not only into the molecular pathway for sGC activation but also for other members of the larger nucleotidyl cyclase family.


Asunto(s)
GMP Cíclico/metabolismo , Simulación de Dinámica Molecular , Mutación , Óxido Nítrico/metabolismo , Guanilil Ciclasa Soluble/genética , Secuencia de Aminoácidos , Animales , Dominio Catalítico , GMP Cíclico/química , Activación Enzimática/genética , Humanos , Cinética , Óxido Nítrico/química , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Guanilil Ciclasa Soluble/química , Guanilil Ciclasa Soluble/metabolismo
16.
J Chem Inf Model ; 59(7): 3222-3228, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31268315

RESUMEN

Detailed understanding of interactions between amino acid residues is critical in using promising difference network analysis approaches to map allosteric communication pathways. Using experimental data as benchmarks, we scan values of two essential residue-residue contact parameters: the distance cutoff (dc) and the cutoff of residue separation in sequence (nc). The optimal dc = 4.5 Å is revealed, which defines the upper bound of the first shell of residue-residue packing in proteins, whereas nc is found to have little effects on performance. We also develop a new energy-based contact method for network analyses and find an equivalency between the energy network using the optimal energy cutoff ec = 1.0 kBT and the structure network using dc = 4.5 Å. The simple 4.5-Å contact method is further shown to have comparable prediction accuracy to a contact method using amino acid type-specific distance cutoffs and chemical shift prediction-based methods. This study provides necessary tools in mapping dynamics to functions.


Asunto(s)
Proteínas/química , Secuencia de Aminoácidos , Biología Computacional/métodos , Membrana Dobles de Lípidos/química , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Análisis de Secuencia de Proteína , Termodinámica
17.
PLoS Comput Biol ; 14(11): e1006364, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30412578

RESUMEN

GTPases regulate a multitude of essential cellular processes ranging from movement and division to differentiation and neuronal activity. These ubiquitous enzymes operate by hydrolyzing GTP to GDP with associated conformational changes that modulate affinity for family-specific binding partners. There are three major GTPase superfamilies: Ras-like GTPases, heterotrimeric G proteins and protein-synthesizing GTPases. Although they contain similar nucleotide-binding sites, the detailed mechanisms by which these structurally and functionally diverse superfamilies operate remain unclear. Here we compare and contrast the structural dynamic mechanisms of each superfamily using extensive molecular dynamics (MD) simulations and subsequent network analysis approaches. In particular, dissection of the cross-correlations of atomic displacements in both the GTP and GDP-bound states of Ras, transducin and elongation factor EF-Tu reveals analogous dynamic features. This includes similar dynamic communities and subdomain structures (termed lobes). For all three proteins the GTP-bound state has stronger couplings between equivalent lobes. Network analysis further identifies common and family-specific residues mediating the state-specific coupling of distal functional sites. Mutational simulations demonstrate how disrupting these couplings leads to distal dynamic effects at the nucleotide-binding site of each family. Collectively our studies extend current understanding of GTPase allosteric mechanisms and highlight previously unappreciated similarities across functionally diverse families.


Asunto(s)
GTP Fosfohidrolasas/química , Sitios de Unión , Cristalografía por Rayos X , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Simulación de Dinámica Molecular , Mutación , Nucleótidos/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Análisis de Componente Principal , Unión Proteica , Conformación Proteica , Dominios Proteicos , Transducción de Señal , Transducina/metabolismo , Proteínas ras/metabolismo
18.
J Chem Inf Model ; 58(7): 1325-1330, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29956925

RESUMEN

A difference contact network analysis (dCNA) method is developed for delineating allosteric mechanisms in proteins. The new method addresses limitations of conventional network analysis methods and is particularly suitable for allosteric systems undergoing large-amplitude conformational changes during function. Tests show that dCNA works well for proteins of varying sizes and functions. The design of dCNA is general enough to facilitate analyses of diverse dynamic data generated by molecular dynamics, crystallography, or nuclear magnetic resonance.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Algoritmos , Regulación Alostérica , ADN/química , FN-kappa B/química , Unión Proteica , Conformación Proteica , Termodinámica
19.
J Phys Chem B ; 122(25): 6528-6535, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29852734

RESUMEN

Conformational dynamics plays the key role in allosteric regulation of enzymes. Despite numerous experimental and computational efforts, the mechanism of how dynamics couple enzymatic function is poorly understood. Here, we introduce a new approach to exploring the dynamics-function relationship combining computational mutagenesis, microsecond-long molecular dynamics simulations, and side-chain torsion angle analyses. We apply our approach to elucidate the allosteric mechanism in cyclophilin A (CypA), a peptidyl-prolyl cis-trans isomerase known to participate in diverse biological processes and be associated with many diseases including cancer. Multiple single mutations are performed in CypA at previously discovered hotspot residues distal from the active site, and residues displaying significant dynamical changes upon mutations are then identified. The mutation-responsive residues delineate three distinct pathways potentially mediating allosteric communications between distal sites: two pathways resemble the allosteric networks identified in a recent experimental study, whereas the third represents a novel pathway. A residue-residue contact analysis is also performed to complement the findings. Furthermore, a recently developed difference contact network analysis is employed to explain mutation-specific allosteric effects. Our results suggest that comparing multiple conformational ensembles generated under various mutational conditions is a powerful tool to gain novel insights into enzymatic functions that are difficult to obtain through examining a single system such as the wild-type. Our approach is easy to extend for other systems. The results can also be utilized to facilitate the design of potent therapeutics targeting CypA.


Asunto(s)
Ciclofilina A/metabolismo , Regulación Alostérica , Dominio Catalítico , Ciclofilina A/química , Ciclofilina A/genética , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína
20.
J Phys Chem B ; 122(25): 6521-6527, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29851476

RESUMEN

Pin1 is a unique phosphorylation-dependent peptidyl-prolyl isomerase that regulates diverse subcellular processes and an important potential therapeutic target. Functional mechanisms of Pin1 are complicated because of the two-domain structural organization: the catalytic domain both binds the specific pSer/Thr-Pro motif and catalyzes the cis/trans isomerization, whereas the WW domain can only bind the trans configuration and is speculated to be responsible for substrate-binding specificity. Numerous studies of Pin1 have led to two divergent conclusions on the functional role of the WW domain. One opinion states that the WW domain is an allosteric effector, and substrate binding to this domain modulates the binding and catalysis in the distal catalytic domain. The other opinion, however, argues that the WW domain does not have any allosteric role. Here, using molecular dynamics and binding free-energy calculations, we examine catalysis and allosteric mechanisms in Pin1 under various substrate- and WW-binding conditions. Our results reveal a strong substrate sequence dependency of catalysis, domain-binding preferences, and allosteric outputs in Pin1. Importantly, we show that the different opinions about the WW domain can be unified in one framework, in which substrate sequences determine whether a positive, negative, or neural allosteric effect will be elicited. Our work further elucidates detailed mechanisms underlying the sequence-dependent allostery of Pin1 and finds that interdomain contacts are key mediators of intraprotein allosteric communications. Our findings collectively provide new insights into the function of Pin1, which may facilitate the development of novel therapeutic drugs targeting Pin1 in the future.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA/química , Regulación Alostérica , Sitios de Unión , Biocatálisis , Dominio Catalítico , Humanos , Simulación de Dinámica Molecular , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...